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This Appendix provides the basic derivations of the multi-country trade model of heterogeneous
firms presented in Hesse (2014). The ensuing presentation borrows from Dixit & Stiglitz (1977),
Melitz (2003) as well as Helpman et al. (2010a) and its technical appendix, Helpman et al. (20105b).

1. A FIRM’S REVENUE AND EXPORT DECISION

a. Domestic Demand

The preferences of a representative consumer are given by a C.E.S. utility function over a contin-

U= [f y(a))pdw]p ,
weQ)

where y(w) indexes the amount of variety w and Q represents the set of available varieties within the

uum of varieties indexed by w:

sector. These varieties are substitutes, implying O < p < 1 and an elasticity of substitution between
any two varieties of
1 1 -1
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The consumer’s constrained maximization problem may be solved by the Lagrangian

L=U- /l(f Qp(cu)y(a))da) - I) ,

where U is a strictly increasing transformation of U, p(w) the price of variety w, and I the con-
sumer’s income. The maximization problem yields the following first-order condition

0L
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T (W)™ = Ap(w) = 0.
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By dividing the first-order condition of one variety w; by the first-order condition of another variety

w,, we obtain the relative demand
1

ywn) _ (P(wl))”"

Yw2) \plw)
Multiplying both sides with y(w;) and using (A.1) yields
p(wr) )0—
p(w2)
When multiplying both sides with p(w;) and taking the integral with respect to w;, we get

y(wy) = y(wz)(

fg[’(wl))’(wl)dM:f Y(w2)p(w))' ™7 p(wr) dw .

WEQ
On the left-hand side we now have the consumer’s total expenditure on all varieties, R, which is
assumed to be equal to his income 7, i.e.,
R=1=y@apw)” [ plon'“dor,
WEQ

Solving for y(w;) yields the Marshallian demand for w,

Ip(wy)™
[ oo P@)' 7 dw,

y(wz) =

By defining an index of the overall price level

P= [f p(w)lgdu)]w ,
weQ

Marshallian demand for a variety w simplifies to

o)

_ —opo-1y _ -
y(w) = plw) P I—( P 7

Domestic demand, denoted by y,(w), can accordingly be written as

Pd(w))_lr I

— —(rP(r—lI — =
Ya(w) = pa(w)™ " Py Iy ( P, P,

where p,(w) denotes the price of the good in the domestic market while P; and I; indicate the

domestic aggregate price and domestic income, respectively.

b. Domestic Revenue

With a firm’s domestic output being equal to domestic demand, domestic firm revenue can be

written as

pa(w) )1_0

ra(w) = yi(w)pa(w) = Id( P,

ool 1
Note that with py(w) = yd(w)—%P ,~ 17 and (A.1) domestic revenue can also be written as in HIR,
ie.,
_1 el 1 _
ra(@) = ya(@)'"T P I = ya@Y POl = ya(@)Aqg,
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where A, is called the domestic demand shifter, with A; = Pf}ltll_p . As with increasing productivity
a firm’s output and thereby its domestic revenue will increase continuously, we can write domestic

revenue — and revenue in general — as

ra(@) = ya(p)Y'Aq .

c. Revenue from Exporting

By assuming country specific iceberg trading costs, 7., such that 7, > 1 units of a variety must be

exported for a unit to arrive in country ¢, we can write the revenue from exporting to country c as

p p
Fre(@) = 2 *';‘“") Prc(@) = (yT—(‘”)) P = (y—(‘”)) Are.

c c TC

where A, = I " P%_. is the demand shifter of country c.

d. T and a Derivation of y,(¢) = y(p)/T
Using the first-order conditions (5), we can write a firm’s total output,
Y(9) = yalp) + Z Yre(@),
c=1

as

1

¢ = A \™ < 2 (A, ﬁ
Y9) = yalg)+ ) Lexl yule) (A_d) = yd(so)(l + Ll ( Ad ) ) ,
c=1 =1

where . equals 1 if the firm exports to country ¢ and O otherwise. By defining T’ = 1+Z§': et

we obtain
Ya(p) = y(@)/T.

e. Total Revenue

A firm’s total revenue is given by
H@) = ra(@) + D eel@) = 3a@P Aa+ D T Vel PP Ase
c=1 c=1

Using again the first-order conditions (5) , this can be written as

'S A\
r( ) = ( )pA + Té]_l ( )pr,c ( - )
$) =Ya\p) Aa 021 Yaly A,

' =7
= yalpY'Aq [1 + ) L7t - ) ] = ya(@Y’ A4 .
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With y,(¢) = y(¢)/T we obtain

(@) = Y@ AT 7. (A2)
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[ Revenue as a Function of a Firm’s Productivity

Using the earlier definition of r(¢) in (A.2), the production function (2), and the first-order condi-
tions (8) and (9), we are now able to express revenue as

Y - “%41% L 1
r(¢)=[ da e 90( PY )(p(l yéd)) ]A‘;“rr‘, (A3)

Ly — 1 mnd"\ (1 +py)b) \ e(1 +py)

where I' = 1 — py — p(1 —yZ;)/6. In a next step, we compute the firm’s profits by making once more
use of the first-order conditions

n(p) = "

r
@) = fa= ) Tefue
PY p
Furthermore, we know that the firm with the lowest productivity, ¢,, makes zero profit and is not
exporting, hence no productivity gains from exporting are possible, i.e., ¢4 = ¢, It follows

I+py
r

Hea) =Ja = rles) =1y = Ja- (A4)

L+py
In the following, we use the expression for r(¢) from (A.3) and determine the relative revenue of a
firm in comparison to the firm with the lowest productivity. We obtain
) f f
2 (i) = ) = r;,(i) T (A.5)
Ty Pd ("]
Since we can decompose a firm’s productivity into its initial productivity, ¢’, and the possible pro-

ductivity gain from exporting, e™¥), we can write revenue as

»
@' \" e pe)

r(¢’) = r;l(—) YTe 1 .
Pd

2. A FIRM’S AVERAGE WAGE

By the same token, we are able to compute a.(¢). We employ the first-order condition (9) and get

0 1-p % :T I—p
ag(¢) = = TT (i) = ap) = a(pq) (ﬁ) Yo . (A.6)
aé‘(@d) Pd ©d

Using (A.4) together with (9), we can compute

_(p(1=vk) 1+ py %_ p( =720 .\
Clg(‘Pd)—(—(lery)g T fd) _(—SF fd) .

With the wage condition from (10), the lowest wage paid by a domestic firm is then

ag(¢q) )’(d _ (P(l - )’{d)fd)l‘? '

"
gramin

wwwsw@=b(

Amin
This yields a wage relation that is solely dependent on ¢, T(¢), ¢4, and parameters, namely

£lg

W(Qo) — ( aa(@ ){d = ( ¥ )}é]d ‘I‘# = W((p) = W:{(i) " T# .
¥d

w, \au(@a) ¢a
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As can be seen from this last equation, wages increase with firm productivity and are always higher
for exporting firms than for non-exporting firms. Ultimately, we decompose productivity into its

components and obtain

Py
P\ f-p) pgie)
1 ) YT do‘r e ddr .

W) = W) (;d

3. A FIRM’S MEASURE OF WORKERS HIRED

In a similar manner, we can derive the lowest measure of workers hired

Amin,d )gd Py I"; ( Amin,d )gd

h(ga) = hy = m(ga) (ag(god) " 1+py b \a(ea)

Using (A.5) and (A.6), the relation to h(p) is then given by

—Lqp

hg) _ rg) (ag<sod))f‘f _ iz ( ¢ )? it ( I ) #

w7 o) @a a

Pd

_4
a=pi=¢4/9) [ ¢ o(1-%)
= Y r

which ultimately leads with (1) to

4

’ p(I* «>‘> —o)(1- ,
hg') = I, (%) L 1= i)
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