

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

Conditioned Belief Propagation Revisited
(Extended Version)

Thomas Geier, Felix Richter, Susanne Biundo

Ulmer Informatik-Berichte
Nr. 2014-03

Juni 2014

Conditioned Belief Propagation Revisited
(Extended Version)

Thomas Geier, Felix Richter, Susanne Biundo
Ulm University, Germany

{thomas.geier, felix.richter, susanne.biundo}@uni-ulm.de

Belief Propagation (BP) applied to cyclic problems is a well known approx-
imate inference scheme for probabilistic graphical models. To improve its ac-
curacy, Conditioned Belief Propagation (CBP) has been proposed, which splits
a problem into subproblems by conditioning on variables, applies BP to sub-
problems, and merges the results to produce an answer to the original problem.
In this work, we propose a reformulated version of CBP that exhibits anytime
behavior and allows for more specific tuning by formalizing a further aspect of
the algorithm through the use of a leaf selection heuristic. We propose several
simple and easy to compute heuristics and demonstrate their performance using
an empirical evaluation on randomly generated problems.

1 Introduction

Belief Propagation (BP) (Pearl, 1986) works by sending messages between variables along
the edges of the dependency graph (Bayesian network or Markov network). For acyclic
problems the algorithm terminates after a number of message-passing steps that is linear in
the size of the graph, producing exact results for the marginal probabilities of all variables
at once. But when the graph contains loops, BP is no longer guaranteed to converge, and
the results produced are no longer exact. However, during the 1990s, it became apparent
empirically that BP is a very well performing approximate algorithm even for cyclic prob-
lems (Weiss, 1997). Some years later Yedidia et al. (2001a) improved our understanding of
BP on a theoretical level by recognizing that the fixed points of the BP update equations
are exactly the stationary points of a variational approximation problem long known in the
physics literature. The work by Yedidia et al. also enables us to compute estimates of the
partition function from the BP messages.

In this extended report1 we describe a simple method of improving the approximation
quality of BP. The basic idea was already formulated in Pearl (1986), who proposed to
condition on variables to break loops. But instead of aiming to break all loops, we apply
BP again to a now slightly less cyclic problem. This very idea was picked up in Eaton

1There exists a short version of this essay (Geier et al., 2014).

1

and Ghahramani (2009), who introduced the term Conditioned Belief Propagation (CBP)
for it. They describe a very elaborate method of picking variables to condition on. In this
paper, we formalize a version of CBP with an additional choice point we call “leaf selection”,
together with simpler, well performing heuristics.

Related to CBP are collapsed sampling methods (Koller and Friedman, 2009, p. 526,
p. 645), which sample assignments to a subset of variables while solving the conditioned
problem exactly (see for example Cycle-Cutset sampling (Bidyuk and Dechter, 2003)). In
contrast to this, CBP systematically explores conditions, while solving the remaining prob-
lems approximately. Further, CBP can be regarded as a mixture model. See for example
Jaakkola and Jordan (1998) for using mixtures of Mean field approximations for proba-
bilistic inference. Closer to the idea of conditioning instead of mixing, while still using
variational approximations, is the work by Bouchard and Zoeter (2009), who are using the
approach for approximating integrals.

The reason why CBP appears to be an interesting inference algorithm is the way in which
it combines two different approaches to inference. At its base it uses BP, which works very
well on “smooth” problems, i.e. problems with a high entropy. But BP fails on low entropy
portions of problems with strong to deterministic dependencies (Weiss, 1997), (Koller and
Friedman, 2009, p. 428/429), and Figure 5. In contrast to this, systematic exploration by
conditioning is the de facto approach for purely deterministic inference (SAT and CSP).
Under the presence of determinism, conditioning enables us to prune portions of the search
space (unit propagation) and reveals context-specific independence (Boutilier et al., 1996;
Zhang and Poole, 1999). In combination with BP, conditioning can be used to eliminate low
entropy portions of the problem. This leaves a high-entropy remainder that can be solved
efficiently with BP.

We will go on with formalizing our notion of CBP. We suggest some simple heuristics
(much simpler than the heuristic described in Eaton and Ghahramani (2009)), and provide
a thorough empirical evaluation on generated problems. We finish with a discussion of
further research directions that also includes an argument on why CBP, as it exists now,
cannot readily be used for large problem instances.

2 Preliminaries

We denote sets of variables using bold letters (X,Y, . . .), and single variables using normal
style (X,Y, . . .). The set of all variables is X . For a set of variables X, let V(X) be the set
of all its assignments, which are functions mapping a variable X ∈ X to one of its finitely
many values Dom(X), and let Ṽ(X) be the set of partial assignments to X. We denote
(partial) assignments with lower case (Greek) letters. The set of all partial assignments is
A := Ṽ(X). A factor φ : V(Xφ)→ R+ over a finite set of variables Xφ maps an assignment
to its variables to the non-negative reals. An inference problem Φ over variables XΦ is given
by a finite set of factors. It maps an assignments x ∈ V(XΦ) to the non-negative reals by

Φ(x) :=
∏
φ∈Φ

φ(xφ). (1)

Here xφ denotes the restriction of x to the variables Xφ of factor φ. The set of all problems
is P. An inference problem defines an unnormalized distribution over the discrete random

2

variables Xφ. The partition function ZΦ of a problem Φ, is defined by

ZΦ :=
∑
XΦ

Φ :=
∑

x∈V(XΦ)

Φx. (2)

In this summation notation we sum over all assignments x ∈ V(XΦ) as argument to Φ,
without explicitly naming them.

The factor graph of a problem Φ is a bipartite graph GΦ := 〈XΦ ∪Φ, E〉 where variables
and factors are vertices and there exists an edge between X and φ, if and only if X ∈ Xφ,
i.e., factor φ depends on variable X.

Belief Propagation

In its interpretation as message passing on factor graphs (Kschischang et al., 2001), BP
sends messages between factors and variables until convergence, which is not guaranteed.
By doing so it attempts to minimize the Kullback-Leibler divergence between the Gibbs
distribution of the factor product and a class of distributions parameterized by message
values (Yedidia et al., 2001a). If the factor graph contains no loops, BP converges to the
exact result in linear time. We will now go on and describe BP in more detail.

With each edge {X,φ} of the factor graph GΦ, there are associated two messages, δX→φ
and δφ→X . Both messages are factors over the variable X. Belief Propagation then tries
to calibrate these messages to achieve the following conditions for all pairs of variables and
factors {X,φ} with X ∈ Xφ:

δφ→X ∝
∑

Xφ\{X}

φ ·
∏

Y ∈Xφ;Y 6=X
δY→φ (3)

δX→φ ∝
∏

ψ∈Nb(X),ψ 6=φ

δψ→X (4)

Here, Nb(X) returns adjacent objects of a vertex X in GΦ.
BP calibration works by iteratively updating the message values according to these equa-

tions, followed by normalizing the messages. The schedule for these updates plays an im-
portant role in the ability to achieve convergence (Koller and Friedman, 2009, pp. 407-411).

When BP converges and equations 3 and 4 hold, we can obtain estimates for the variable
marginals βX ≈ Z−1

Φ Φ(X) = Z−1
Φ

∑
XΦ\{X}Φ, which we call variable beliefs; in a similar

way we can obtain factor beliefs βφ:

βX ∝
∏

φ∈Nb(X)

δφ→X (5)

βφ ∝
∏

X∈Xφ

φ · δX→φ (6)

It is also possible to obtain an estimate on the partition function ZBP
Φ ≈ ZΦ via the Bethe

free energy approximation (Yedidia et al., 2001a), (Koller and Friedman, 2009, p. 414):

3

lnZBP
Φ :=

∑
φ∈Φ

Eβφ [lnφ] +
∑
φ∈Φ

Hβφ

−
∑
X∈XΦ

(|Nb(X)| − 1) ·HβX (7)

Here, Eβφ [lnφ] is the expected value of factor φ using its factor belief as probability measure
and Hβφ and HβX are the entropies of the factor beliefs and variable beliefs, respectively.

3 Conditioned Belief Propagation

CBP is an inference algorithm for undirected graphical models over categorical random
variables that yields an approximation to the partition function. CBP recursively applies
conditioning to produce smaller subproblems on which BP hopefully performs better. The
results to these subproblems can then be aggregated to obtain estimates of the partition
function (and variable beliefs) of the original problem. If we decompose a problem Φ on
some variable X ∈ XΦ, it holds that

ZΦ =
∑
XΦ

Φ =
∑
X

∑
XΦ\{X}

Φ =
∑
X

ZΦ[x], (8)

where Φ[x] is the problem obtained by conditioning all factors in Φ on the assignment
x ∈ V(X). This equation essentially constitutes the justification of the correctness of one
step of conditioning. In a similar way we can also compute an estimate of the marginal
probabilities using the variable beliefs of the conditioned problems.

The CBP algorithm decomposes a given problem Φ step by step. This forms a tree of
partial assignments with the empty assignment as the root. For each inner node ξ ∈ Ṽ(XΦ),
its children are all the assignments obtained by extending ξ by some assignments to a select
variable X. Because at each stage of the algorithm only the leaf nodes of this tree are
relevant, we capture the state of the computation by a set of partial assignments Ξ ⊆
Ṽ(XΦ). Ξ always implies a partition of all assignments V(XΦ). The function refineL,V :
P × 2A → 2A applies one refinement step to a set of leaves Ξ, using leaf selection heuristic
L : P × 2A → A and variable selection heuristic V : P ×A → X . Letting ξ := L(Φ,Ξ), and
X := V (Φ, ξ),

refineL,V (Φ,Ξ) := (Ξ \ {ξ}) ∪ {{ξ ∪ {X 7→ xi}} | xi ∈ Dom(X)}. (9)

To obtain an estimate of the partition function, we sum over the estimates ZBPΦ[ξ] obtained
from applying BP to the problem Φ conditioned on partial assignment ξ. We define the
function sum : P × 2A → R+ as

sum(Φ,Ξ) :=
∑
ξ∈Ξ

ZBP
Φ[ξ]. (10)

Then CBPL,V : P × N+ → R+ estimates the partition function using n steps of CBP by

CBPL,V (Φ, n) := sum(Φ, refinenL,V (Φ, {∅})). (11)

4

Here, refinenL,V means the n-fold recursive application of refineL,V in its second argument:

refinenL,V (Φ,Ξ) := refineL,V (Φ, refinen−1
L,V (Φ,Ξ)) and refine0

L,V (Φ,Ξ) := Ξ. Also note
that this formalization of CBP is agnostic to the used inference algorithm, and every other
way of calculating an approximate partition function can be used where ZBPΦ[ξ] appear.

Since BP yields exact results on tree-structured problems, one can stop the decomposition
of a leaf once it contains no loops, or use other exact methods to solve the leaf earlier. But
anyway CBP converges to the exact solution, since it becomes equivalent to summing over
all assignments once all variables are conditioned in all leaves. Also note that the algorithm
terminates after finitely many steps.

Proposition 1. For all factor products Φ, all leaf selection heuristics L and variable selec-
tion heuristics V

lim
n→∞

CBPL,V (Φ, n) = ZΦ.

In theory a run of BP only has to be performed on leaves once the final result is computed.
But most of the proposed heuristics draw their information from a run of BP, making it
necessary to run BP on every intermediate conditioned problem. Note that these problems
also become smaller over time, and the computational effort required by running BP on
each new leaf should decrease.

In its formulation given by us, CBP can be implemented as an anytime algorithm, because
one can compute additional applications of refine until time runs out. This anytime
behavior is in contrast to the original definition of CBP (Eaton and Ghahramani, 2009),
which was recursive and required the provision of a stopping criterion such as the maximum
recursion depth or some threshold value for the leaves’ partition function estimates.

4 Heuristics for CBP

The variable selection heuristic V in refineL,V is given an assignment and the original
problem (thus the equivalent to a conditioned problem), and picks a target variable for
conditioning next. We go on to discuss the properties such a selection scheme should fulfill
and follow this with proposing some simple heuristics that try to achieve these goals.

Viewing the problem of picking a variable to condition on from the perspective of the
used approximative algorithm, we hope to obtain more accurate results from BP applied to
the subproblems than from BP applied to the original problem. One of the main reasons
BP performs unsatisfactorily are near deterministic factors, which can induce long distance
dependences between variables. Short loops can also lead to oscillation and prevent BP from
producing a good approximation (Koller and Friedman, 2009, pp. 428-429). We should thus
seek to condition on variables that participate in such problematic structures.

From the perspective of using conditioning to decompose a problem we want to exercise
the strengths of conditioning and choose variables for branching that allow this. Condition-
ing lets us exploit certain kinds of structure. First, we may encounter partial assignments
that let us evaluate early some factors that might yield zero, and thus we can avoid exam-
ining all further extensions and prune our search early. Picking variables that yield some
zero probability assignments to their value is thus favorable. This concept is very similar to
unit propagation in the field of SAT solving.

5

A different structural property that is exploitable when conditioning is context-specific
independence. Some variables X,Y may become independent of each other in Φ when
conditioning on some context ξ ∈ V(C), i.e. they are situated in different components of
GΦ[ξ]. This might not be true for a different context ξ′ ∈ V(C) and thus is not revealed in the
graphical structure of GΦ. By preferring assignments that induce more independences, we
can thus steer towards sub-problems of lower structural complexity. This can, for example,
be measured by their respective tree width. We know that BP applied to tree-structured
problems is exact, so we assume that sparser problems lead to better results when performing
BP, although this might not be true in general. For future work, it might also be of interest
to examine variable selection schemes employed in SAT and CSP solving.

After having discussed the aims we try to fulfill when selecting a branching variable, let
us now look at some concrete heuristics.

Variable Selection Heuristics

All variable selection heuristics that are described in the following section are given a prob-
lem as input (as opposed to both the original problem and a partial assignment). This
argument problem is defined to be the conditioned problem V (Φ′) := V (Φ, ξ). We deal
analogously with the later described leaf selection heuristic functions.

Time To Convergence. We hypothesize that those variables that take long to converge in
a run of BP are also those variables located in areas where BP yields a bad approximation.
This claim is also supported by the theoretical result of Weiss (1997) for networks with a
single loop. For this purpose, let us define the function UΦ that maps directed versions
of edges in the factor graph of Φ to N+ in the following way. Assuming that the used
BP schedule only recomputes a single message each step, UΦ(X → φ) returns the number
of the BP iteration in which δX→φ was changed last time. This requires that the BP
implementation can detect the convergence of messages and does not further update them.

A first possible heuristic NTTC (Naive Time To Convergence) picks the variable that
participated in the last message update before convergence:

NTTC(Φ) := arg max
X∈XΦ

max
φ∈Nb(X)

max (UΦ(X → φ), UΦ(φ→ X)) . (12)

But there are good reasons to assume that a variable selected by NTTC is not part of
the problematic region. For example imagine a problem with one loop and a long tail, like
the one depicted below.

X

The reason of BP converging slowly and yielding a wrong result will be messages oscillating
in the loop. Once the loop has settled, the tail needs to adjust to the messages inside the
loop. Picking a variable that received the last update, as NTTC does, will result branching
on variable X. And that will yield no improvement to our approximation.

6

1.00

1.05

1.10

1.15

1.00

1.05

1.10

1.15

1.20

Grid S1

Rand S1

0 10 20 30
Rank of variable

R
el

at
iv

e
Im

pr
ov

em
en

t

Heuristic

NTTC

TTC

Figure 1: Median of the relative improvement ∆δ∗,V (Φ, 1) (see Equation 17) of one step of
CBP over 1000 random problem instances. Problems are 6× 6 grids and random problems
with 25 variables. Variable selection is based on the ranking of variables according to the
values inside the arg max of Equations 12 and 13. The result of conditioning on higher
ranked variables is on the right. The plots show that conditioning on variables that score
higher gives a larger improvement. Also TTC yields a better improvement than NTTC.

Therefore, we propose a second heuristic TTC. This heuristic selects a variable next to
the edge that participated in the last bidirectional update. Formally, TTC is defined by the
following equation:

TTC(Φ) := arg max
X∈XΦ

max
φ∈Nb(X)

min (UΦ(X → φ), UΦ(φ→ X)) (13)

We empirically analyzed the suitability of NTTC and TTC by a small scale experi-
ment (Figure 1). We can observe that our hypothesis is supported, since the relative im-
provement is larger for conditioning on the highly ranked variables. We can also observe
that TTC appears to perform slightly better than NTTC, which also follows our intuition.

Min Entropy. The Min Entropy heuristic selects the variable with the lowest entropy:

VminH(Φ) := arg min
X∈DΦ

HβX (14)

This heuristic favors extreme or even deterministic variable beliefs and thus might lead to
some children with a very low probability, which might be later exploited by focusing on the
high probability children. In addition, such extreme beliefs might appear close to extreme
factors, and by eliminating them we hope to obtain a smoother problem.

7

Max Degree. By choosing a variable that appears in many factors, the Max Degree heuris-
tic tries to reduce dependencies and results in structurally simpler children:

VmaxD(Φ) := arg max
X∈XΦ

|Nb(X)| (15)

Tree Width. The Tree Width heuristic, just like the Max Degree heuristic tries to struc-
turally simplify the problem. But it does so in a more elaborate way. It randomly selects a
variable, which appears in the largest clique of a constructed junction tree, we obtain using
the min-degree (also called min-neighbors) heuristic (Koller and Friedman, 2009, p. 314).

BBP. Variable selection is the main heuristic for the original CBP (Eaton and Ghahramani,
2009). Eaton’s hypothesis about which variable should be conditioned on focuses on the
idea to capture long ranging correlations. He tries to implement such a selection based on
calculating the derivative of some value V with respect to the marginal beliefs PΦ(X). He
shows that this calculation can be performed efficiently using back-belief-propagation (BBP).
BBP is then used to find variables that “push the model’s beliefs in a certain direction”. This
direction is defined by a sample drawn by Gibbs sampling, which is hopefully a representative
of one of the modes of Φ.

We want to make one general remark about the described heuristics here. In contrast to
the original CBP algorithm, the algorithm as stated here always branches on all values of the
selected variable. While this allows us to use variable selection heuristics that are oblivious
to the variable’s values, like the structural heuristics Max Degree and Tree Width, this
approach is possibly inferior when applied to problems with large variable domains. While
our empirical evaluation focuses on problems with binary variables only, we like to note that
at least the TTC and Min Entropy heuristics can easily be adapted to be value-specific.

Leaf Selection Heuristics

The CBP algorithm, as described in this essay, selects one leaf to further condition in each
iteration. In contrast to the original CBP algorithm, this allows for a further parametrization
by choosing among different heuristics to pick the next leaf. If we were only performing
one step of refinement, we would want to select a subproblem for further conditioning, for
which one step of CBP yields the maximal reduction in approximation error. Obviously this
reduction depends largely on the choice of variable selection heuristic and is thus difficult
to analyze in isolation. In the following paragraphs we propose some basic heuristics which
we expect to perform well.

Max Z. The first leaf selection heuristic we propose chooses the leaf ξ ∈ Ξ with the highest
ZBP

Φ[ξ]. The idea is to focus on a leaf that has a high impact on the final result. In addition,
the selection of the most probable leaf does well, since it also fights the accumulation of
error caused by sub-problems for which BP overestimates the true partition function.

Time To Convergence. In a similar manner as the Last Update heuristic for variable
selection, we select the leaf that took the longest for BP to converge on. This heuristic’s
intent is to identify problems that are likely to have inaccurate approximations.

8

Min Depth. This heuristic chooses a leaf that has a minimal number of variables con-
ditioned. This approach mimics the original recursive CBP algorithm. It also has one
desirable property: it guarantees that a leaf will be picked sooner or later. This can be
beneficial because it allows CBP to fix grossly wrong approximations that might not be
selected otherwise; e.g., when a leaf with a significant weight gets largely underestimated,
then the Max Z heuristic will not touch it again and it remains as a source of error.

5 Evaluation

We evaluated the proposed heuristics on randomly generated problems with different topolo-
gies and different methods for generating potentials. We focus on the accuracy of inferring
the partition function ZΦ. To measure the total approximation error, we report the relative
error of the inferred log partition function

δL,V (Φ, n) :=

∣∣∣∣ log CBPL,V (Φ, n)− logZΦ

logZΦ

∣∣∣∣ . (16)

The value δ∗,∗(Φ, 0) is the result of running ordinary BP on the original problem and can
serve as a baseline. The relative improvement is the relative error of CBP compared to the
relative error of BP:

∆δL,V (Φ, n) :=
δ∗,∗(Φ, 0)

δL,V (Φ, n)
(17)

Note that the relative improvement is larger for better heuristics.
We generate problems using two different graph topologies, and binary random variables

only. The topologies are two dimensional grids (Grid), and random graphs with 25 variables
and 50 factors over three randomly selected variables each (Rand). We use two methods
to generate values for factors. They are either sampled from an exponentiated normal
distribution exp(N (0, σ)) with standard deviation σ (denoted by SX for σ = X). Or they
are generated by starting with a neutral factor and changing just one value by sampling
it from an exponentiated normal distribution with a given standard deviation (denoted by
CX for σ = X). The CX potentials simulate structured factors (or features), like the ones
obtained from grounding Markov Logic Networks (Richardson and Domingos, 2006). These
factors are basically a soft clause and as such they exhibit context-specific independence,
since such a factor reduces to a neutral factor as soon as a variable is assigned in contradiction
to the special assignment.

To obtain an overview over the performance of CBP with various heuristics, we generated
500 instances from each problem class and applied 64 steps of CBP, implemented in our
own framework. We used the available implementation of the BBP heuristic available in
libDAI (Mooij, 2010). Since that implementation does not have a leaf selection heuristic,
we assign the MIN DEPTH heuristic to it, which is equivalent when the number of steps is
a power of two. We did not include the NTTC variable selection heuristic in the plots. Its
performance was always slightly below the performance of TTC.

The relative errors for some leaf selection and variable selection heuristics are given in
Figure 2. One notices that the approximation error of BBP from libDAI is lower for the
first iteration on some problem classes (Rand S2, Rand C2). Our investigation revealed
that our BP implementation and that from libDAI disagree on problems with larger errors,

9

RANDOM MAX DEGREE TREEWIDTH MIN ENTROPY TTC BBP

1e−04

1e−05

1e−04

1e−05

1e−04

0.001

0.001

0.010

0.001

0.001

0.010

Grid S1

Grid S2

Grid S3

Rand S1

Rand S2

Rand C1

Rand C2

1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64
Iteration

R
el

at
iv

e
E

rr
or

Leaf Selection MAX Z MIN DEPTH RANDOM TTC

Figure 2: Median of the relative error δL,V (Φ, n) over 500 problems plotted over the number
of CBP steps n for different combinations of leaf selection heuristic L and variable selection
heuristic V . Plot columns show different V ; plot rows show problem classes; X-axis and
Y-axis are logarithmic; lower values are better.

with libDAI yielding a better result more often than not. This is caused by failures to con-
verge. The message schedule in libDAI always updates all messages in each step, while our
implementation only updates if a significant change would occur. It appears that the more
aggressive updating of libDAI improves BP convergence. Only the problem configurations
Rand S2 and Rand C2 contain cases where BP did not converge.

Analyzing the results, we can notice that the median decrease in relative error appears
linear on the log-log plots for all heuristic combinations2. This means that the benefit of CBP
only increases logarithmically with the number of leaves in the tree. This is in accordance
with a theoretical result about the related mixture of mean field approximation stated by
Jaakkola and Jordan (1998), and follows the intuition that later on, the importance of a
single leaf decreases, and a correction applied to it has a smaller influence on the final result.

2The mean shows the same relationship, but is less stable.

10

RANDOM MAX DEGREE TREEWIDTH MIN ENTROPY TTC BBP

1

10

1

10

1

10

1

10

1

10

1

10

1

10

Grid S1

Grid S2

Grid S3

Rand S1

Rand S2

Rand C1

Rand C2

R
el

at
iv

e
Im

pr
ov

em
en

t

Leaf Selection MAX Z MIN DEPTH RANDOM TTC

Figure 3: Median of the relative improvement ∆δL,V (Φ, 64) after 64 steps of CBP over
500 problems for different combinations of leaf selection heuristic L and variable selection
heuristic V . Plot columns show different V ; plot rows show problem classes; Y-axis is
logarithmic; higher values are better.

For better comparison we also provide the relative improvement after 64 steps of CBP in
Figure 3, which is basically equivalent to the slope of the curve in Figure 2. The improvement
CBP yields over plain BP is very good for the examined problem classes, yielding a decrease
in error of nearly two magnitudes after 64 steps for some configurations. Also all examined
heuristics perform better than the random heuristics.

Concerning the influence of the used leaf selection heuristic, the MAX Z heuristic domi-
nates all configurations. This was except for the MIN ENTROPY variable selection heuristic
which yielded the best results when used with TTC for the Rand S2 and Rand C2 problems.
The superior performance of the MAX Z leaf selection heuristic supports our intuition that
focusing on the most important subproblems is a good strategy. We expect that a random-
ized mixture of MAX Z with MIN DEPTH may perform even better, because this mitigates
neglecting underestimated subproblems.

When looking at the performance of the various variable selection heuristics, we see that

11

1

10

100

0 1 2 3
σ

R
el

at
iv

e
Im

pr
ov

em
en

L

MAX Z

MIN DEPTH

RANDOM

V

TTC

MAX DEGREE

MIN ENTROPY

RANDOM

Figure 4: Median of the relative improvement ∆δL,V (Φ, 64) after 64 steps of CBP with
L = MAX Z, V = TTC. Evaluation uses 250 instances of 8× 8 grids with varying strength
of factors each: standard deviation σ is plotted along x-axis. The plot shows how the benefit
of CBP improves with tighter coupling.

TTC comes out as the best heuristic on the grid problems, basically tying with the much
more complicated BBP when focusing only on the MIN DEPTH leaf selection. These two
variable selection heuristics are the only ones that perform well on grid problems. On
the randomly structured problems, it seems that all heuristics deliver at least a decent
performance. This effect might also be attributed to the lower number of variables in these
problems compared to the grid problems. For the randomly structured problems we observe
that the structure-oriented heuristic MAX DEGREE performs best.

When looking at the strength of the factor values, we can also recognize that the im-
provement in accuracy offered by the CBP approach is better for the non-smooth potentials,
despite BP seems to provide about the same initial approximation for all values of sigma.
A possible explanation is that with increasing sigma, the probability mass is concentrated
in fewer modes, and CBP manages to concentrate on those regions. We had a closer look
at this phenomenon with a dedicated experiment (Figure 4), focusing only on grid prob-
lems and the best-performing heuristic for those (MAX Z/TTC). The results show that the
improvement CBP delivers over ordinary BP increases very consistently with the strength
of the dependencies between variables. For higher values of σ, this improvement cannot
be attributed solely to the growing degradation of the BP approximation for low entropy
distributions, as our experiments revealed that the relative error of BP maxes around σ = 1
(Figure 5), at least for the range of σ we examined.

12

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●
●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●
●

●

●

●

●

●

●

●

●
● ● ● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

1e−10

1e−07

1e−04

0 1 2 3
σ

R
el

at
iv

e
E

rr
or

Figure 5: Median and 0.05, 0.95 quantiles of relative error for ordinary BP on grid problems
with varying amount of coupling. Evaluation uses 250 instances of 8× 8 grids with varying
strength of factors each: standard deviation σ is plotted along x-axis.

6 Discussion

CBP offers a simple means to improve the accuracy of BP. Our formulation can be cast as
an anytime algorithm, and allows to trade in time and space for improved accuracy. Since
CBP solves partially conditioned problems, it is also able to reveal and exploit context-
specific independence. Further, it can exploit deterministic dependencies when those become
inconsistent with the current condition. Then it is possible to evaluate the current leaf to
zero. In this way CBP is an algorithm that has facilities to solve both high entropy parts of
problems (BP), as well as low entropy parts (conditioning). This is a perfect combination,
as BP is weak on low entropy problems (i.e. problems with very strong dependencies), and
conditioning fails under the presence of many equal choices.

Despite the apparent benefits of CBP, we would also like to point out a major short-
coming that has to be solved before CBP can be used as a true general-purpose inference
algorithm. As stated before, the accuracy of CBP improves only with the logarithm of the
number of steps. This is intuitive, since with the progression of CBP the error contribution
of each leaf decreases with its weight, and thus each further decomposition step has a lesser
impact on the final result. In addition, the relative improvement per step will be much
smaller for problems with more variables, as the absolute improvement that can be gained
by conditioning on one variable stays the same. This means that the computational cost
of CBP required to achieve the same relative improvement grows exponentially with the
problem size, and this is clearly impractical. To prove this, we conducted an experiment
that shows the relative improvement of a fixed number of CBP steps over an increasing
problem size in (Figure 6). To make CBP a viable choice, we have to develop a way
to exploit the independence between the conditioning effects of variables that are largely
unrelated to each other.

13

2

5

10

8 16 32 64
Problem Size

R
el

at
iv

e
Im

pr
ov

em
en

t

Figure 6: Median of relative improvement ∆δL,V (Φ, 64) of 64 steps of CBP on 500 instances
of 8 × (8 · size) grid problems (σ = 1); L = MAX Z, V = TTC. One can observe how the
benefit of a fixed number of CBP steps diminishes with increasing problem size.

This work focuses on finding good heuristics for improving the BP approximation on the
conditioned problems. There remain many opportunities to improve CBP on the decom-
position side by using concepts from the CSP community, just as SampleSearch (Gogate
and Dechter, 2011) does. Unit-Propagation and clause learning are two prominent can-
didates that could greatly improve the performance on problems containing deterministic
constraints.

Any serious implementation of CPB should also examine leaves for the possibility of
solving them exactly. This could mean applying a Junction Tree algorithm (Koller and
Friedman, 2009) as soon as the tree width drops below some threshold value. Heuristic tests
for tree width can be very cheap. It is also possible to update an existing tree-decomposition
on each conditioning step, which can practically eliminate the cost of this test.

What appears as another possible improvement deals with the possibility of subproblems
decomposing into independent parts after conditioning on some values; a concept also known
as Cutset-Conditioning (Pearl, 1988, pp. 204-210). It appears tempting to decompose
subproblems multiplicatively and solve these independently of each other, but we have
to keep in mind that BP already exploits factorization which manifests in the graphical
structure of the problem.

7 Conclusion

We have proposed a reformulated, iterative version of CBP that allows CBP to be used as
an anytime algorithm and allows better tuning via the use of a leaf selection heuristic. We
discussed the fundamental goals that both kinds of heuristics try to achieve, and proposed
a set of interesting candidates. In an empirical evaluation we could demonstrate that the
revised CBP algorithm using the proposed heuristics outperforms the original heuristic in
terms of accuracy. The new heuristics are both simpler to implement, computationally less
demanding, and yield more exact results.

14

Overall CBP can serve as a simple method to improve the accuracy of Belief Propaga-
tion and extends readily to other message passing algorithms, such as Generalized Belief
Propagation (Yedidia et al., 2001b). Since the improvement offered by CBP grows only
logarithmically with the number of leaf problems, its use remains limited. In this regard,
a method that lifts this limitation by reusing computations across leaf problems is conceiv-
able. In any case, CBP is not only another probabilistic inference method, but can also
serve as a tool to gain insights into the behavior of BP.

Acknowledgements

This work is done within the Transregional Collaborative Research Centre SFB/ TRR 62
“Companion-Technology for Cognitive Technical Systems” funded by the German Research
Foundation (DFG).

References

Bidyuk, B. and Dechter, R. (2003). Cycle-cutset sampling for Bayesian networks. In Ad-
vances in Artificial Intelligence, pages 297–312. Springer.

Bouchard, G. and Zoeter, O. (2009). Split variational inference. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 57–64. ACM.

Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D. (1996). Context-specific inde-
pendence in bayesian networks. In Proceedings of the Twelfth international conference on
Uncertainty in artificial intelligence, pages 115–123. Morgan Kaufmann Publishers Inc.

Eaton, F. and Ghahramani, Z. (2009). Choosing a variable to clamp: Approximate infer-
ence using conditioned belief propagation. In Proceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics, volume 5, pages 145–152.

Geier, T., Richter, F., and Biundo, S. (2014). Conditioned Beleif Propagation Revisited. In
European Conference on Artificial Intelligence.

Gogate, V. and Dechter, R. (2011). Samplesearch: Importance sampling in presence of
determinism. Artificial Intelligence, 175(2):694–729.

Jaakkola, T. S. and Jordan, M. I. (1998). Improving the mean field approximation via the
use of mixture distributions. In Learning in graphical models, pages 163–173. Springer.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press.

Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. (2001). Factor graphs and the sum-
product algorithm. Information Theory, IEEE Transactions on, 47(2):498–519.

Mooij, J. M. (2010). libDAI: A free and open source C++ library for discrete approximate
inference in graphical models. Journal of Machine Learning Research, 11:2169–2173.

15

Pearl, J. (1986). Fusion, propagation, and structuring in belief networks. Artificial intelli-
gence, 29(3):241–288.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann.

Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine learning, 62(1-
2):107–136.

Weiss, Y. (1997). Belief propagation and revision in networks with loops. AI Memo 1616
(CBCL Paper 155), MIT. Presented in NIPS 97 workshop on graphical models.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2001a). Bethe free energy, kikuchi approx-
imations, and belief propagation algorithms. Advances in neural information processing
systems, 13.

Yedidia, J. S., Freeman, W. T., Weiss, Y., et al. (2001b). Generalized belief propagation.
Advances in neural information processing systems, pages 689–695.

Zhang, N. L. and Poole, D. (1999). On the role of context-specific independence in proba-
bilistic inference.

16

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-11 Thomas Beuter, Peter Dadam:
Prinzipien der Replikationskontrolle in verteilten Systemen

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn
Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser,
 Markus Lauer

 Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
 Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für
produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam

 Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
 WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

2008-10 Henning Wunderlich
On span-Pсс and related classes in structural communication complexity

2008-11 M. Maucher, U. Schöning, H.A. Kestler
On the different notions of pseudorandomness

2008-12 Henning Wunderlich
On Toda’s Theorem in structural communication complexity

2008-13 Manfred Reichert, Peter Dadam
Realizing Adaptive Process-aware Information Systems with ADEPT2

2009-01 Peter Dadam, Manfred Reichert
The ADEPT Project: A Decade of Research and Development for Robust and Fexible
Process Support
Challenges and Achievements

2009-02 Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kreher,
Martin Jurisch
Von ADEPT zur AristaFlow® BPM Suite – Eine Vision wird Realität “Correctness by
Construction” und flexible, robuste Ausführung von Unternehmensprozessen

2009-03 Alena Hallerbach, Thomas Bauer, Manfred Reichert
Correct Configuration of Process Variants in Provop

2009-04 Martin Bader

On Reversal and Transposition Medians

2009-05 Barbara Weber, Andreas Lanz, Manfred Reichert
Time Patterns for Process-aware Information Systems: A Pattern-based Analysis

2009-06 Stefanie Rinderle-Ma, Manfred Reichert
Adjustment Strategies for Non-Compliant Process Instances

2009-07 H.A. Kestler, B. Lausen, H. Binder H.-P. Klenk. F. Leisch, M. Schmid

Statistical Computing 2009 – Abstracts der 41. Arbeitstagung

2009-08 Ulrich Kreher, Manfred Reichert, Stefanie Rinderle-Ma, Peter Dadam
Effiziente Repräsentation von Vorlagen- und Instanzdaten in Prozess-Management-
Systemen

2009-09 Dammertz, Holger, Alexander Keller, Hendrik P.A. Lensch
Progressive Point-Light-Based Global Illumination

2009-10 Dao Zhou, Christoph Müssel, Ludwig Lausser, Martin Hopfensitz, Michael Kühl,
Hans A. Kestler
Boolean networks for modeling and analysis of gene regulation

2009-11 J. Hanika, H.P.A. Lensch, A. Keller
Two-Level Ray Tracing with Recordering for Highly Complex Scenes

2009-12 Stephan Buchwald, Thomas Bauer, Manfred Reichert
 Durchgängige Modellierung von Geschäftsprozessen durch Einführung eines

Abbildungsmodells: Ansätze, Konzepte, Notationen

2010-01 Hariolf Betz, Frank Raiser, Thom Frühwirth
A Complete and Terminating Execution Model for Constraint Handling Rules

2010-02 Ulrich Kreher, Manfred Reichert

Speichereffiziente Repräsentation instanzspezifischer
Änderungen in Prozess-Management-Systemen

2010-03 Patrick Frey

Case Study: Engine Control Application

2010-04 Matthias Lohrmann und Manfred Reichert

Basic Considerations on Business Process Quality

2010-05 HA Kestler, H Binder, B Lausen, H-P Klenk, M Schmid, F Leisch (eds):

Statistical Computing 2010 - Abstracts der 42. Arbeitstagung

2010-06 Vera Künzle, Barbara Weber, Manfred Reichert

Object-aware Business Processes: Properties, Requirements, Existing Approaches

2011-01 Stephan Buchwald, Thomas Bauer, Manfred Reichert
Flexibilisierung Service-orientierter Architekturen

2011-02 Johannes Hanika, Holger Dammertz, Hendrik Lensch
Edge-Optimized À-Trous Wavelets for Local Contrast Enhancement with Robust
Denoising

2011-03 Stefanie Kaiser, Manfred Reichert

Datenflussvarianten in Prozessmodellen: Szenarien, Herausforderungen, Ansätze

2011-04 Hans A. Kestler, Harald Binder, Matthias Schmid, Friedrich Leisch, Johann M. Kraus

(eds):
Statistical Computing 2011 - Abstracts der 43. Arbeitstagung

2011-05 Vera Künzle, Manfred Reichert

PHILharmonicFlows: Research and Design Methodology

2011-06 David Knuplesch, Manfred Reichert

Ensuring Business Process Compliance Along the Process Life Cycle

2011-07 Marcel Dausend

Towards a UML Profile on Formal Semantics for Modeling Multimodal Interactive
Systems

2011-08 Dominik Gessenharter

Model-Driven Software Development with ACTIVECHARTS - A Case Study

2012-01 Andreas Steigmiller, Thorsten Liebig, Birte Glimm

Extended Caching, Backjumping and Merging for Expressive Description Logics

2012-02 Hans A. Kestler, Harald Binder, Matthias Schmid, Johann M. Kraus (eds):

Statistical Computing 2012 - Abstracts der 44. Arbeitstagung

2012-03 Felix Schüssel, Frank Honold, Michael Weber

Influencing Factors on Multimodal Interaction at Selection Tasks

2012-04 Jens Kolb, Paul Hübner, Manfred Reichert

Model-Driven User Interface Generation and Adaption in Process-Aware Information
Systems

2012-05 Matthias Lohrmann, Manfred Reichert

Formalizing Concepts for Efficacy-aware Business Process Modeling

2012-06 David Knuplesch, Rüdiger Pryss, Manfred Reichert

A Formal Framework for Data-Aware Process Interaction Models

2012-07 Clara Ayora, Victoria Torres, Barbara Weber, Manfred Reichert, Vicente Pelechano

Dealing with Variability in Process-Aware Information Systems: Language
Requirements, Features, and Existing Proposals

2013-01 Frank Kargl
 Abstract Proceedings of the 7th Workshop on Wireless and Mobile Ad-
 Hoc Networks (WMAN 2013)

2013-02 Andreas Lanz, Manfred Reichert, Barbara Weber

A Formal Semantics of Time Patterns for Process-aware Information Systems

2013-03 Matthias Lohrmann, Manfred Reichert

Demonstrating the Effectiveness of Process Improvement Patterns with Mining
Results

2013-04 Semra Catalkaya, David Knuplesch, Manfred Reichert

Bringing More Semantics to XOR-Split Gateways in Business Process Models Based
on Decision Rules

2013-05 David Knuplesch, Manfred Reichert, Linh Thao Ly, Akhil Kumar,

Stefanie Rinderle-Ma
On the Formal Semantics of the Extended Compliance Rule Graph

2013-06 Andreas Steigmiller, Birte Glimm

Nominal Schema Absorption

2013-07 Hans A. Kestler, Matthias Schmid, Florian Schmid, Dr. Markus Maucher,
 Johann M. Kraus (eds)

Statistical Computing 2013 - Abstracts der 45. Arbeitstagung

2013-08 Daniel Ott, Dr. Alexander Raschke
 Evaluating Benefits of Requirement Categorization in Natural Language
 Specifications for Review Improvements

2013-09 Philip Geiger, Rüdiger Pryss, Marc Schickler, Manfred Reichert

Engineering an Advanced Location-Based Augmented Reality Engine for Smart
Mobile Devices

2014-01 Andreas Lanz, Manfred Reichert

Analyzing the Impact of Process Change Operations on Time-Aware Processes

2014-02 Andreas Steigmiller, Birte Glimm, and Thorsten Liebig

Coupling Tableau Algorithms for the DL SROIQ with Completion-based Saturation
Procedures

2014-03 Thomas Geier, Felix Richter, Susanne Biundo

Conditioned Belief Propagation Revisited: Extended Version

Ulmer Informatik-Berichte
ISSN 0939-5091

Herausgeber:
Universität Ulm
Fakultät für Ingenieurwissenschaften und Informatik
89069 Ulm

	UIB_2014-03_Text.pdf
	Introduction
	Preliminaries
	Conditioned Belief Propagation
	Heuristics for CBP
	Evaluation
	Discussion
	Conclusion

