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Belief Propagation (BP) applied to cyclic problems is a well known approx-
imate inference scheme for probabilistic graphical models. To improve its ac-
curacy, Conditioned Belief Propagation (CBP) has been proposed, which splits
a problem into subproblems by conditioning on variables, applies BP to sub-
problems, and merges the results to produce an answer to the original problem.
In this work, we propose a reformulated version of CBP that exhibits anytime
behavior and allows for more specific tuning by formalizing a further aspect of
the algorithm through the use of a leaf selection heuristic. We propose several
simple and easy to compute heuristics and demonstrate their performance using
an empirical evaluation on randomly generated problems.

1 Introduction

Belief Propagation (BP) (Pearl, 1986) works by sending messages between variables along
the edges of the dependency graph (Bayesian network or Markov network). For acyclic
problems the algorithm terminates after a number of message-passing steps that is linear in
the size of the graph, producing exact results for the marginal probabilities of all variables
at once. But when the graph contains loops, BP is no longer guaranteed to converge, and
the results produced are no longer exact. However, during the 1990s, it became apparent
empirically that BP is a very well performing approximate algorithm even for cyclic prob-
lems (Weiss, 1997). Some years later Yedidia et al. (2001a) improved our understanding of
BP on a theoretical level by recognizing that the fixed points of the BP update equations
are exactly the stationary points of a variational approximation problem long known in the
physics literature. The work by Yedidia et al. also enables us to compute estimates of the
partition function from the BP messages.

In this extended report1 we describe a simple method of improving the approximation
quality of BP. The basic idea was already formulated in Pearl (1986), who proposed to
condition on variables to break loops. But instead of aiming to break all loops, we apply
BP again to a now slightly less cyclic problem. This very idea was picked up in Eaton

1There exists a short version of this essay (Geier et al., 2014).
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and Ghahramani (2009), who introduced the term Conditioned Belief Propagation (CBP)
for it. They describe a very elaborate method of picking variables to condition on. In this
paper, we formalize a version of CBP with an additional choice point we call “leaf selection”,
together with simpler, well performing heuristics.

Related to CBP are collapsed sampling methods (Koller and Friedman, 2009, p. 526,
p. 645), which sample assignments to a subset of variables while solving the conditioned
problem exactly (see for example Cycle-Cutset sampling (Bidyuk and Dechter, 2003)). In
contrast to this, CBP systematically explores conditions, while solving the remaining prob-
lems approximately. Further, CBP can be regarded as a mixture model. See for example
Jaakkola and Jordan (1998) for using mixtures of Mean field approximations for proba-
bilistic inference. Closer to the idea of conditioning instead of mixing, while still using
variational approximations, is the work by Bouchard and Zoeter (2009), who are using the
approach for approximating integrals.

The reason why CBP appears to be an interesting inference algorithm is the way in which
it combines two different approaches to inference. At its base it uses BP, which works very
well on “smooth” problems, i.e. problems with a high entropy. But BP fails on low entropy
portions of problems with strong to deterministic dependencies (Weiss, 1997), (Koller and
Friedman, 2009, p. 428/429), and Figure 5. In contrast to this, systematic exploration by
conditioning is the de facto approach for purely deterministic inference (SAT and CSP).
Under the presence of determinism, conditioning enables us to prune portions of the search
space (unit propagation) and reveals context-specific independence (Boutilier et al., 1996;
Zhang and Poole, 1999). In combination with BP, conditioning can be used to eliminate low
entropy portions of the problem. This leaves a high-entropy remainder that can be solved
efficiently with BP.

We will go on with formalizing our notion of CBP. We suggest some simple heuristics
(much simpler than the heuristic described in Eaton and Ghahramani (2009)), and provide
a thorough empirical evaluation on generated problems. We finish with a discussion of
further research directions that also includes an argument on why CBP, as it exists now,
cannot readily be used for large problem instances.

2 Preliminaries

We denote sets of variables using bold letters (X,Y, . . . ), and single variables using normal
style (X,Y, . . . ). The set of all variables is X . For a set of variables X, let V(X) be the set
of all its assignments, which are functions mapping a variable X ∈ X to one of its finitely
many values Dom(X), and let Ṽ(X) be the set of partial assignments to X. We denote
(partial) assignments with lower case (Greek) letters. The set of all partial assignments is
A := Ṽ(X ). A factor φ : V(Xφ)→ R+ over a finite set of variables Xφ maps an assignment
to its variables to the non-negative reals. An inference problem Φ over variables XΦ is given
by a finite set of factors. It maps an assignments x ∈ V(XΦ) to the non-negative reals by

Φ(x) :=
∏
φ∈Φ

φ(xφ). (1)

Here xφ denotes the restriction of x to the variables Xφ of factor φ. The set of all problems
is P. An inference problem defines an unnormalized distribution over the discrete random
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variables Xφ. The partition function ZΦ of a problem Φ, is defined by

ZΦ :=
∑
XΦ

Φ :=
∑

x∈V(XΦ)

Φx. (2)

In this summation notation we sum over all assignments x ∈ V(XΦ) as argument to Φ,
without explicitly naming them.

The factor graph of a problem Φ is a bipartite graph GΦ := 〈XΦ ∪Φ, E〉 where variables
and factors are vertices and there exists an edge between X and φ, if and only if X ∈ Xφ,
i.e., factor φ depends on variable X.

Belief Propagation

In its interpretation as message passing on factor graphs (Kschischang et al., 2001), BP
sends messages between factors and variables until convergence, which is not guaranteed.
By doing so it attempts to minimize the Kullback-Leibler divergence between the Gibbs
distribution of the factor product and a class of distributions parameterized by message
values (Yedidia et al., 2001a). If the factor graph contains no loops, BP converges to the
exact result in linear time. We will now go on and describe BP in more detail.

With each edge {X,φ} of the factor graph GΦ, there are associated two messages, δX→φ
and δφ→X . Both messages are factors over the variable X. Belief Propagation then tries
to calibrate these messages to achieve the following conditions for all pairs of variables and
factors {X,φ} with X ∈ Xφ:

δφ→X ∝
∑

Xφ\{X}

φ ·
∏

Y ∈Xφ;Y 6=X
δY→φ (3)

δX→φ ∝
∏

ψ∈Nb(X),ψ 6=φ

δψ→X (4)

Here, Nb(X) returns adjacent objects of a vertex X in GΦ.
BP calibration works by iteratively updating the message values according to these equa-

tions, followed by normalizing the messages. The schedule for these updates plays an im-
portant role in the ability to achieve convergence (Koller and Friedman, 2009, pp. 407-411).

When BP converges and equations 3 and 4 hold, we can obtain estimates for the variable
marginals βX ≈ Z−1

Φ Φ(X) = Z−1
Φ

∑
XΦ\{X}Φ, which we call variable beliefs; in a similar

way we can obtain factor beliefs βφ:

βX ∝
∏

φ∈Nb(X)

δφ→X (5)

βφ ∝
∏

X∈Xφ

φ · δX→φ (6)

It is also possible to obtain an estimate on the partition function ZBP
Φ ≈ ZΦ via the Bethe

free energy approximation (Yedidia et al., 2001a), (Koller and Friedman, 2009, p. 414):
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lnZBP
Φ :=

∑
φ∈Φ

Eβφ [lnφ] +
∑
φ∈Φ

Hβφ

−
∑
X∈XΦ

(|Nb(X)| − 1) ·HβX (7)

Here, Eβφ [lnφ] is the expected value of factor φ using its factor belief as probability measure
and Hβφ and HβX are the entropies of the factor beliefs and variable beliefs, respectively.

3 Conditioned Belief Propagation

CBP is an inference algorithm for undirected graphical models over categorical random
variables that yields an approximation to the partition function. CBP recursively applies
conditioning to produce smaller subproblems on which BP hopefully performs better. The
results to these subproblems can then be aggregated to obtain estimates of the partition
function (and variable beliefs) of the original problem. If we decompose a problem Φ on
some variable X ∈ XΦ, it holds that

ZΦ =
∑
XΦ

Φ =
∑
X

∑
XΦ\{X}

Φ =
∑
X

ZΦ[x], (8)

where Φ[x] is the problem obtained by conditioning all factors in Φ on the assignment
x ∈ V(X). This equation essentially constitutes the justification of the correctness of one
step of conditioning. In a similar way we can also compute an estimate of the marginal
probabilities using the variable beliefs of the conditioned problems.

The CBP algorithm decomposes a given problem Φ step by step. This forms a tree of
partial assignments with the empty assignment as the root. For each inner node ξ ∈ Ṽ(XΦ),
its children are all the assignments obtained by extending ξ by some assignments to a select
variable X. Because at each stage of the algorithm only the leaf nodes of this tree are
relevant, we capture the state of the computation by a set of partial assignments Ξ ⊆
Ṽ(XΦ). Ξ always implies a partition of all assignments V(XΦ). The function refineL,V :
P × 2A → 2A applies one refinement step to a set of leaves Ξ, using leaf selection heuristic
L : P × 2A → A and variable selection heuristic V : P ×A → X . Letting ξ := L(Φ,Ξ), and
X := V (Φ, ξ),

refineL,V (Φ,Ξ) := (Ξ \ {ξ}) ∪ {{ξ ∪ {X 7→ xi}} | xi ∈ Dom(X)}. (9)

To obtain an estimate of the partition function, we sum over the estimates ZBPΦ[ξ] obtained
from applying BP to the problem Φ conditioned on partial assignment ξ. We define the
function sum : P × 2A → R+ as

sum(Φ,Ξ) :=
∑
ξ∈Ξ

ZBP
Φ[ξ]. (10)

Then CBPL,V : P × N+ → R+ estimates the partition function using n steps of CBP by

CBPL,V (Φ, n) := sum(Φ, refinenL,V (Φ, {∅})). (11)
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Here, refinenL,V means the n-fold recursive application of refineL,V in its second argument:

refinenL,V (Φ,Ξ) := refineL,V (Φ, refinen−1
L,V (Φ,Ξ)) and refine0

L,V (Φ,Ξ) := Ξ. Also note
that this formalization of CBP is agnostic to the used inference algorithm, and every other
way of calculating an approximate partition function can be used where ZBPΦ[ξ] appear.

Since BP yields exact results on tree-structured problems, one can stop the decomposition
of a leaf once it contains no loops, or use other exact methods to solve the leaf earlier. But
anyway CBP converges to the exact solution, since it becomes equivalent to summing over
all assignments once all variables are conditioned in all leaves. Also note that the algorithm
terminates after finitely many steps.

Proposition 1. For all factor products Φ, all leaf selection heuristics L and variable selec-
tion heuristics V

lim
n→∞

CBPL,V (Φ, n) = ZΦ.

In theory a run of BP only has to be performed on leaves once the final result is computed.
But most of the proposed heuristics draw their information from a run of BP, making it
necessary to run BP on every intermediate conditioned problem. Note that these problems
also become smaller over time, and the computational effort required by running BP on
each new leaf should decrease.

In its formulation given by us, CBP can be implemented as an anytime algorithm, because
one can compute additional applications of refine until time runs out. This anytime
behavior is in contrast to the original definition of CBP (Eaton and Ghahramani, 2009),
which was recursive and required the provision of a stopping criterion such as the maximum
recursion depth or some threshold value for the leaves’ partition function estimates.

4 Heuristics for CBP

The variable selection heuristic V in refineL,V is given an assignment and the original
problem (thus the equivalent to a conditioned problem), and picks a target variable for
conditioning next. We go on to discuss the properties such a selection scheme should fulfill
and follow this with proposing some simple heuristics that try to achieve these goals.

Viewing the problem of picking a variable to condition on from the perspective of the
used approximative algorithm, we hope to obtain more accurate results from BP applied to
the subproblems than from BP applied to the original problem. One of the main reasons
BP performs unsatisfactorily are near deterministic factors, which can induce long distance
dependences between variables. Short loops can also lead to oscillation and prevent BP from
producing a good approximation (Koller and Friedman, 2009, pp. 428-429). We should thus
seek to condition on variables that participate in such problematic structures.

From the perspective of using conditioning to decompose a problem we want to exercise
the strengths of conditioning and choose variables for branching that allow this. Condition-
ing lets us exploit certain kinds of structure. First, we may encounter partial assignments
that let us evaluate early some factors that might yield zero, and thus we can avoid exam-
ining all further extensions and prune our search early. Picking variables that yield some
zero probability assignments to their value is thus favorable. This concept is very similar to
unit propagation in the field of SAT solving.
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A different structural property that is exploitable when conditioning is context-specific
independence. Some variables X,Y may become independent of each other in Φ when
conditioning on some context ξ ∈ V(C), i.e. they are situated in different components of
GΦ[ξ]. This might not be true for a different context ξ′ ∈ V(C) and thus is not revealed in the
graphical structure of GΦ. By preferring assignments that induce more independences, we
can thus steer towards sub-problems of lower structural complexity. This can, for example,
be measured by their respective tree width. We know that BP applied to tree-structured
problems is exact, so we assume that sparser problems lead to better results when performing
BP, although this might not be true in general. For future work, it might also be of interest
to examine variable selection schemes employed in SAT and CSP solving.

After having discussed the aims we try to fulfill when selecting a branching variable, let
us now look at some concrete heuristics.

Variable Selection Heuristics

All variable selection heuristics that are described in the following section are given a prob-
lem as input (as opposed to both the original problem and a partial assignment). This
argument problem is defined to be the conditioned problem V (Φ′) := V (Φ, ξ). We deal
analogously with the later described leaf selection heuristic functions.

Time To Convergence. We hypothesize that those variables that take long to converge in
a run of BP are also those variables located in areas where BP yields a bad approximation.
This claim is also supported by the theoretical result of Weiss (1997) for networks with a
single loop. For this purpose, let us define the function UΦ that maps directed versions
of edges in the factor graph of Φ to N+ in the following way. Assuming that the used
BP schedule only recomputes a single message each step, UΦ(X → φ) returns the number
of the BP iteration in which δX→φ was changed last time. This requires that the BP
implementation can detect the convergence of messages and does not further update them.

A first possible heuristic NTTC (Naive Time To Convergence) picks the variable that
participated in the last message update before convergence:

NTTC(Φ) := arg max
X∈XΦ

max
φ∈Nb(X)

max (UΦ(X → φ), UΦ(φ→ X)) . (12)

But there are good reasons to assume that a variable selected by NTTC is not part of
the problematic region. For example imagine a problem with one loop and a long tail, like
the one depicted below.

X

The reason of BP converging slowly and yielding a wrong result will be messages oscillating
in the loop. Once the loop has settled, the tail needs to adjust to the messages inside the
loop. Picking a variable that received the last update, as NTTC does, will result branching
on variable X. And that will yield no improvement to our approximation.
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Figure 1: Median of the relative improvement ∆δ∗,V (Φ, 1) (see Equation 17) of one step of
CBP over 1000 random problem instances. Problems are 6× 6 grids and random problems
with 25 variables. Variable selection is based on the ranking of variables according to the
values inside the arg max of Equations 12 and 13. The result of conditioning on higher
ranked variables is on the right. The plots show that conditioning on variables that score
higher gives a larger improvement. Also TTC yields a better improvement than NTTC.

Therefore, we propose a second heuristic TTC. This heuristic selects a variable next to
the edge that participated in the last bidirectional update. Formally, TTC is defined by the
following equation:

TTC(Φ) := arg max
X∈XΦ

max
φ∈Nb(X)

min (UΦ(X → φ), UΦ(φ→ X)) (13)

We empirically analyzed the suitability of NTTC and TTC by a small scale experi-
ment (Figure 1). We can observe that our hypothesis is supported, since the relative im-
provement is larger for conditioning on the highly ranked variables. We can also observe
that TTC appears to perform slightly better than NTTC, which also follows our intuition.

Min Entropy. The Min Entropy heuristic selects the variable with the lowest entropy:

VminH(Φ) := arg min
X∈DΦ

HβX (14)

This heuristic favors extreme or even deterministic variable beliefs and thus might lead to
some children with a very low probability, which might be later exploited by focusing on the
high probability children. In addition, such extreme beliefs might appear close to extreme
factors, and by eliminating them we hope to obtain a smoother problem.
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Max Degree. By choosing a variable that appears in many factors, the Max Degree heuris-
tic tries to reduce dependencies and results in structurally simpler children:

VmaxD(Φ) := arg max
X∈XΦ

|Nb(X)| (15)

Tree Width. The Tree Width heuristic, just like the Max Degree heuristic tries to struc-
turally simplify the problem. But it does so in a more elaborate way. It randomly selects a
variable, which appears in the largest clique of a constructed junction tree, we obtain using
the min-degree (also called min-neighbors) heuristic (Koller and Friedman, 2009, p. 314).

BBP. Variable selection is the main heuristic for the original CBP (Eaton and Ghahramani,
2009). Eaton’s hypothesis about which variable should be conditioned on focuses on the
idea to capture long ranging correlations. He tries to implement such a selection based on
calculating the derivative of some value V with respect to the marginal beliefs PΦ(X). He
shows that this calculation can be performed efficiently using back-belief-propagation (BBP).
BBP is then used to find variables that “push the model’s beliefs in a certain direction”. This
direction is defined by a sample drawn by Gibbs sampling, which is hopefully a representative
of one of the modes of Φ.

We want to make one general remark about the described heuristics here. In contrast to
the original CBP algorithm, the algorithm as stated here always branches on all values of the
selected variable. While this allows us to use variable selection heuristics that are oblivious
to the variable’s values, like the structural heuristics Max Degree and Tree Width, this
approach is possibly inferior when applied to problems with large variable domains. While
our empirical evaluation focuses on problems with binary variables only, we like to note that
at least the TTC and Min Entropy heuristics can easily be adapted to be value-specific.

Leaf Selection Heuristics

The CBP algorithm, as described in this essay, selects one leaf to further condition in each
iteration. In contrast to the original CBP algorithm, this allows for a further parametrization
by choosing among different heuristics to pick the next leaf. If we were only performing
one step of refinement, we would want to select a subproblem for further conditioning, for
which one step of CBP yields the maximal reduction in approximation error. Obviously this
reduction depends largely on the choice of variable selection heuristic and is thus difficult
to analyze in isolation. In the following paragraphs we propose some basic heuristics which
we expect to perform well.

Max Z. The first leaf selection heuristic we propose chooses the leaf ξ ∈ Ξ with the highest
ZBP

Φ[ξ]. The idea is to focus on a leaf that has a high impact on the final result. In addition,
the selection of the most probable leaf does well, since it also fights the accumulation of
error caused by sub-problems for which BP overestimates the true partition function.

Time To Convergence. In a similar manner as the Last Update heuristic for variable
selection, we select the leaf that took the longest for BP to converge on. This heuristic’s
intent is to identify problems that are likely to have inaccurate approximations.
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Min Depth. This heuristic chooses a leaf that has a minimal number of variables con-
ditioned. This approach mimics the original recursive CBP algorithm. It also has one
desirable property: it guarantees that a leaf will be picked sooner or later. This can be
beneficial because it allows CBP to fix grossly wrong approximations that might not be
selected otherwise; e.g., when a leaf with a significant weight gets largely underestimated,
then the Max Z heuristic will not touch it again and it remains as a source of error.

5 Evaluation

We evaluated the proposed heuristics on randomly generated problems with different topolo-
gies and different methods for generating potentials. We focus on the accuracy of inferring
the partition function ZΦ. To measure the total approximation error, we report the relative
error of the inferred log partition function

δL,V (Φ, n) :=

∣∣∣∣ log CBPL,V (Φ, n)− logZΦ

logZΦ

∣∣∣∣ . (16)

The value δ∗,∗(Φ, 0) is the result of running ordinary BP on the original problem and can
serve as a baseline. The relative improvement is the relative error of CBP compared to the
relative error of BP:

∆δL,V (Φ, n) :=
δ∗,∗(Φ, 0)

δL,V (Φ, n)
(17)

Note that the relative improvement is larger for better heuristics.
We generate problems using two different graph topologies, and binary random variables

only. The topologies are two dimensional grids (Grid), and random graphs with 25 variables
and 50 factors over three randomly selected variables each (Rand). We use two methods
to generate values for factors. They are either sampled from an exponentiated normal
distribution exp(N (0, σ)) with standard deviation σ (denoted by SX for σ = X). Or they
are generated by starting with a neutral factor and changing just one value by sampling
it from an exponentiated normal distribution with a given standard deviation (denoted by
CX for σ = X). The CX potentials simulate structured factors (or features), like the ones
obtained from grounding Markov Logic Networks (Richardson and Domingos, 2006). These
factors are basically a soft clause and as such they exhibit context-specific independence,
since such a factor reduces to a neutral factor as soon as a variable is assigned in contradiction
to the special assignment.

To obtain an overview over the performance of CBP with various heuristics, we generated
500 instances from each problem class and applied 64 steps of CBP, implemented in our
own framework. We used the available implementation of the BBP heuristic available in
libDAI (Mooij, 2010). Since that implementation does not have a leaf selection heuristic,
we assign the MIN DEPTH heuristic to it, which is equivalent when the number of steps is
a power of two. We did not include the NTTC variable selection heuristic in the plots. Its
performance was always slightly below the performance of TTC.

The relative errors for some leaf selection and variable selection heuristics are given in
Figure 2. One notices that the approximation error of BBP from libDAI is lower for the
first iteration on some problem classes (Rand S2, Rand C2). Our investigation revealed
that our BP implementation and that from libDAI disagree on problems with larger errors,
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Figure 2: Median of the relative error δL,V (Φ, n) over 500 problems plotted over the number
of CBP steps n for different combinations of leaf selection heuristic L and variable selection
heuristic V . Plot columns show different V ; plot rows show problem classes; X-axis and
Y-axis are logarithmic; lower values are better.

with libDAI yielding a better result more often than not. This is caused by failures to con-
verge. The message schedule in libDAI always updates all messages in each step, while our
implementation only updates if a significant change would occur. It appears that the more
aggressive updating of libDAI improves BP convergence. Only the problem configurations
Rand S2 and Rand C2 contain cases where BP did not converge.

Analyzing the results, we can notice that the median decrease in relative error appears
linear on the log-log plots for all heuristic combinations2. This means that the benefit of CBP
only increases logarithmically with the number of leaves in the tree. This is in accordance
with a theoretical result about the related mixture of mean field approximation stated by
Jaakkola and Jordan (1998), and follows the intuition that later on, the importance of a
single leaf decreases, and a correction applied to it has a smaller influence on the final result.

2The mean shows the same relationship, but is less stable.
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Figure 3: Median of the relative improvement ∆δL,V (Φ, 64) after 64 steps of CBP over
500 problems for different combinations of leaf selection heuristic L and variable selection
heuristic V . Plot columns show different V ; plot rows show problem classes; Y-axis is
logarithmic; higher values are better.

For better comparison we also provide the relative improvement after 64 steps of CBP in
Figure 3, which is basically equivalent to the slope of the curve in Figure 2. The improvement
CBP yields over plain BP is very good for the examined problem classes, yielding a decrease
in error of nearly two magnitudes after 64 steps for some configurations. Also all examined
heuristics perform better than the random heuristics.

Concerning the influence of the used leaf selection heuristic, the MAX Z heuristic domi-
nates all configurations. This was except for the MIN ENTROPY variable selection heuristic
which yielded the best results when used with TTC for the Rand S2 and Rand C2 problems.
The superior performance of the MAX Z leaf selection heuristic supports our intuition that
focusing on the most important subproblems is a good strategy. We expect that a random-
ized mixture of MAX Z with MIN DEPTH may perform even better, because this mitigates
neglecting underestimated subproblems.

When looking at the performance of the various variable selection heuristics, we see that
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of factors each: standard deviation σ is plotted along x-axis. The plot shows how the benefit
of CBP improves with tighter coupling.

TTC comes out as the best heuristic on the grid problems, basically tying with the much
more complicated BBP when focusing only on the MIN DEPTH leaf selection. These two
variable selection heuristics are the only ones that perform well on grid problems. On
the randomly structured problems, it seems that all heuristics deliver at least a decent
performance. This effect might also be attributed to the lower number of variables in these
problems compared to the grid problems. For the randomly structured problems we observe
that the structure-oriented heuristic MAX DEGREE performs best.

When looking at the strength of the factor values, we can also recognize that the im-
provement in accuracy offered by the CBP approach is better for the non-smooth potentials,
despite BP seems to provide about the same initial approximation for all values of sigma.
A possible explanation is that with increasing sigma, the probability mass is concentrated
in fewer modes, and CBP manages to concentrate on those regions. We had a closer look
at this phenomenon with a dedicated experiment (Figure 4), focusing only on grid prob-
lems and the best-performing heuristic for those (MAX Z/TTC). The results show that the
improvement CBP delivers over ordinary BP increases very consistently with the strength
of the dependencies between variables. For higher values of σ, this improvement cannot
be attributed solely to the growing degradation of the BP approximation for low entropy
distributions, as our experiments revealed that the relative error of BP maxes around σ = 1
(Figure 5), at least for the range of σ we examined.

12



●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●
●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●
●

●

●

●

●

●

●

●

●
● ● ● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

1e−10

1e−07

1e−04

0 1 2 3
σ

R
el

at
iv

e 
E

rr
or

Figure 5: Median and 0.05, 0.95 quantiles of relative error for ordinary BP on grid problems
with varying amount of coupling. Evaluation uses 250 instances of 8× 8 grids with varying
strength of factors each: standard deviation σ is plotted along x-axis.

6 Discussion

CBP offers a simple means to improve the accuracy of BP. Our formulation can be cast as
an anytime algorithm, and allows to trade in time and space for improved accuracy. Since
CBP solves partially conditioned problems, it is also able to reveal and exploit context-
specific independence. Further, it can exploit deterministic dependencies when those become
inconsistent with the current condition. Then it is possible to evaluate the current leaf to
zero. In this way CBP is an algorithm that has facilities to solve both high entropy parts of
problems (BP), as well as low entropy parts (conditioning). This is a perfect combination,
as BP is weak on low entropy problems (i.e. problems with very strong dependencies), and
conditioning fails under the presence of many equal choices.

Despite the apparent benefits of CBP, we would also like to point out a major short-
coming that has to be solved before CBP can be used as a true general-purpose inference
algorithm. As stated before, the accuracy of CBP improves only with the logarithm of the
number of steps. This is intuitive, since with the progression of CBP the error contribution
of each leaf decreases with its weight, and thus each further decomposition step has a lesser
impact on the final result. In addition, the relative improvement per step will be much
smaller for problems with more variables, as the absolute improvement that can be gained
by conditioning on one variable stays the same. This means that the computational cost
of CBP required to achieve the same relative improvement grows exponentially with the
problem size, and this is clearly impractical. To prove this, we conducted an experiment
that shows the relative improvement of a fixed number of CBP steps over an increasing
problem size in (Figure 6). To make CBP a viable choice, we have to develop a way
to exploit the independence between the conditioning effects of variables that are largely
unrelated to each other.
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Figure 6: Median of relative improvement ∆δL,V (Φ, 64) of 64 steps of CBP on 500 instances
of 8 × (8 · size) grid problems (σ = 1); L = MAX Z, V = TTC. One can observe how the
benefit of a fixed number of CBP steps diminishes with increasing problem size.

This work focuses on finding good heuristics for improving the BP approximation on the
conditioned problems. There remain many opportunities to improve CBP on the decom-
position side by using concepts from the CSP community, just as SampleSearch (Gogate
and Dechter, 2011) does. Unit-Propagation and clause learning are two prominent can-
didates that could greatly improve the performance on problems containing deterministic
constraints.

Any serious implementation of CPB should also examine leaves for the possibility of
solving them exactly. This could mean applying a Junction Tree algorithm (Koller and
Friedman, 2009) as soon as the tree width drops below some threshold value. Heuristic tests
for tree width can be very cheap. It is also possible to update an existing tree-decomposition
on each conditioning step, which can practically eliminate the cost of this test.

What appears as another possible improvement deals with the possibility of subproblems
decomposing into independent parts after conditioning on some values; a concept also known
as Cutset-Conditioning (Pearl, 1988, pp. 204-210). It appears tempting to decompose
subproblems multiplicatively and solve these independently of each other, but we have
to keep in mind that BP already exploits factorization which manifests in the graphical
structure of the problem.

7 Conclusion

We have proposed a reformulated, iterative version of CBP that allows CBP to be used as
an anytime algorithm and allows better tuning via the use of a leaf selection heuristic. We
discussed the fundamental goals that both kinds of heuristics try to achieve, and proposed
a set of interesting candidates. In an empirical evaluation we could demonstrate that the
revised CBP algorithm using the proposed heuristics outperforms the original heuristic in
terms of accuracy. The new heuristics are both simpler to implement, computationally less
demanding, and yield more exact results.
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Overall CBP can serve as a simple method to improve the accuracy of Belief Propaga-
tion and extends readily to other message passing algorithms, such as Generalized Belief
Propagation (Yedidia et al., 2001b). Since the improvement offered by CBP grows only
logarithmically with the number of leaf problems, its use remains limited. In this regard,
a method that lifts this limitation by reusing computations across leaf problems is conceiv-
able. In any case, CBP is not only another probabilistic inference method, but can also
serve as a tool to gain insights into the behavior of BP.
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