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Abstract

Rank-1 lattices are available in any dimension for any number of lattice points and because
their generation is so efficient, they often are used in quasi-Monte Carlo methods. Applying
the Fourier transform to functions sampled on rank-1 lattice points turns out to be simple and
efficient if the number of lattice points is a power of two. Considering the Voronoi diagram of
a rank-1 lattice as a partition of the simulation domain and its dual, the Delauney tessellation,
as a mesh for display and interpolation, rank-1 lattices are an interesting alternative to tensor
product lattices. Instead of classical criteria, we investigate lattices selected by maximized
minimum distance, because then the Delauney tessellation becomes as equilateral as possible.
Similar arguments apply for the selection of the wave vectors. We explore the use of rank-1
lattices for the examples of stochastic field synthesis and a simple fluid solver with periodic
boundary conditions.

1 Introduction

Many simulations are evaluated on Cartesian tensor product lattice structures although their
sampling efficiency is not optimal [PM62]. Rank-1 lattices allow for a better sampling efficiency
when selected carefully. We develop and review the basic tools like meshing, fast Fourier transform,
lattice cell access, and interpolation for simulation on rank-1 lattices. In addition we give insight
how to choose suitable rank-1 lattice parameters. We illustrate our new techniques for generating
ocean waves as stochastic field and a simple fluid dynamics simulation. The most prominent
example is the simulation of the ocean surface [AR86, Tes00] by random fields as used in the
movies Titanic, Waterworld, or The Devil’s Advocate [Ent]. The same principle has been applied
to modeling of turbulent wind fields and various other phenomena [SF91, SF93, Sta95, Sta97].

2 Rank-1 Lattices

A discrete subset of Rs that contains Zs and is closed under addition and subtraction is called a
lattice [SJ94]. Rank-1 lattices

Ln,g :=
{

l

n
g + ∆ : ∆ ∈ Zs; l = 0, . . . , n− 1

}
are defined by using only one suitable generator vector g ∈ Ns for a fixed number n ∈ N. Often
it is more useful to consider their restriction

Ln,g ∩ [0, 1)s =
{
xl :=

l

n
g mod 1 : l = 0, . . . , n− 1

}
to the s-dimensional unit torus [0, 1)s (see the example in Figure 1). A notable advantage of
rank-1 lattices over tensor product lattices is that they exist for any number n of points in any
dimension s.

An s×s matrix V is called basis of the lattice Ln,g, if Ln,g = {x = V l : l ∈ Zs}. Of all possible
bases the Minkowski-reduced bases [AEVZ02] are the most useful for our purpose. Such a basis
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Figure 1: Illustration of the geometry of rank-1 lattices for an example in s = 2 dimensions with
n = 32 points and the generator vector g =

(
1
7

)
(see the solid arrow from the origin). The solid

lines depict the Voronoi diagram. Each cell is generated by a lattice point and contains the points
of the unit torus, which are closer to this lattice point than to any other. In addition the lattice
points are the centroids of the Voronoi cells. The dashed lines represent the dual graph, which is
the Delauney tessellation.

contains the s shortest linearly independent vectors and can be found by a computer search over
all n points xl using their shortest distance to the origin on the unit torus. These vectors actually
describe the Delauney tessellation and can be used for accessing neighboring lattice points.

2.1 Fast Fourier Transform

The fast Fourier transform is a versatile tool in simulation. Usually the transform has to be
performed for each coordinate once. Instead of the standard tensor product algorithm, rank-1
lattices in s dimensions allow for transforming the data using only the one-dimensional Fourier
transform [LH03], which is simpler to implement and a little bit more efficient for the same number
of lattice points.

For this purpose the set Kn := {~k0, . . . ,~kn−1} ⊂ Zs of wave vectors has to be selected such
that each wave vector

~kj ∈ Zj := {~k ∈ Zs : ~k · ~g ≡ j (mod n)}, (1)

where g is the generator vector of the rank-1 lattice Ln,g under consideration. Hence,

~kj · ~xl = ~kj ·
l

n
~g = (j + rjn)

l

n
=

jl

n
+ rj l

for some integer rj ∈ Z. Given Fourier coefficients ~̂
f(~kj), synthesizing a function ~f on the lattice

Ln,g by

~f(~xl) =
n−1∑
j=0

~̂
f(~kj)e2πi~kj ·~xl =

n−1∑
j=0

~̂
f(~kj)e2πi( jl

n +rj l) =
n−1∑
j=0

~̂
f(~kj)e2πi jl

n (2)

in fact turns out to be a one-dimensional finite Fourier series independent of the dimension s,
because rj l is integer and therefore e2πirj l = 1.
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Figure 2: Examples of monohedral tilings of the 2-dimensional plane with the dual lattice and its
basis. The arrows show the Minkowski-reduced basis vectors.

For n being a power of two, the fast inverse Fourier transform can synthesize the function in
all lattice points most efficiently. Given a function ~f(xl) the fast Fourier transform can be used
for the analysis, too:

~̂
f(kj) =

n−1∑
l=0

~f(xl)e−2πi jl
n .

2.2 Choosing the Wave Vectors

There are infinitly many choices of wave vectors as defined by the sets Zj in equation (1). Un-
derstanding the connection between the wave vectors and the structure of a rank-1 lattice helps
to choose the best wave vectors for a given problem and provides a way to construct these wave
vectors.

The dual lattice
L⊥

n,g := {k ∈ Zs : k · g ≡ 0 (mod n)} = Z0

of a rank-1 lattice Ln,g has the basis U = (V −1)T . Now the set Kn of wave vectors is U periodic
[PM62], i.e. it has the property that the sets

K ′
n := Kn + U l l ∈ Zs

are valid sets of n wave vectors with K ′
n ∩Kn = ∅ as well. Consequently, any tile that results in a

monohedral tiling of Zs (see the illustration in Figure 2) with periodicity U can be used as a set
of wave vectors [LH03].

Once such a tiling is chosen all integer vectors in the interior of one cell are the wave vectors.
Note that the choice of the tiling is arbitrary and the elements of a single tile are not necessarily
connected. However, one can use known spectral properties of the function that should be syn-
thesized or analyzed. If no spectral properties are known a reasonable assumption for practical
problems is an isotropic spectrum (i.e. no preferred direction) and that low frequencies are most
important. This results in choosing the wave vectors in the fundamental (i.e. including the origin)
Voronoi cell of L⊥

n,g, which is illustrated in Figure 3.
The above assumptions also provide a criterion for choosing the generator vector g of the

rank-1 lattice: Choose g so that the in-circle of the fundamental Voronoi cell of the dual lattice is
maximized. This is equivalent to maximizing the sampling efficiency

η :=
R

P

as defined by Petersen [PM62], where R is the volume of the in-circle of the Voronoi region and
P is the volume of the fundamental Voronoi cell. The sampling efficiency measures how many of
the important frequencies are actually captured by sampling with a given lattice.
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Figure 3: Dual lattice (circles) of a rank-1 lattice with n = 256 and g =
(

1
30

)
. The set of wave

vectors Kn (solid disks) in the fundamental Voronoi cell is highlighted.
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Figure 4: Sampling efficiency η of different lattices with n = 144. Note that the Fibnacci lattice
with g =

(
1
89

)
is not the best choice with respect to sampling efficiency.

For rank-1 lattices this ratio can be maximized by choosing the generator vector such that
the minimal distance between any two points of the dual lattice is maximized. Figure 4 shows
the Voronoi diagrams of different rank-1 lattices, where a Cartesian tensor product and hexagonal
lattice are shown for comparison. The hexagonal lattice is optimal with respect to the sampling
efficiency in two dimensions and maximizing the minimum distance in a rank-1 lattice yields a
good approximation. With increasing number of points the sampling efficiency of rank-1 lattices
approaches the sampling efficiency of the hexagonal lattice.

Of course, if other spectral properties are known the rank-1 lattice search can be adapted for
a better approximation of this kind of functions.

3 Applications in Computer Graphics

We illustrate the idea of simulation on rank-1 lattices by implementing two examples from the
domain of computer graphics and animation in the new framework.

3.1 Spectral Synthesis of Ocean Waves

Along the method used by Tessendorf [Tes00], a periodic ocean tile (see Figure 5) is realized as a
stochastic field using Fourier synthesis on a rank-1 lattice. Using the Fourier coefficients

ĥ(k, t) := ĥ0(k)eiω(k)t + ĥ∗0(−k)e−iω(k)t
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Low resolution mesh

Low resolution shaded mesh
n = 1024,g =

(
1

271

)

High resolution shaded mesh
n = 16384,g =

(
1

1435

)

Figure 5: Left: Synthesized periodic 50m× 50m tiles in two resolutions. Right: Modeling a larger
piece of the ocean by tiling the periodic patches.

the height field

h(xl, t) :=
n−1∑
j=0

ĥ(kj , t)e2πi jl
n

becomes periodic in time t and real. For deep water the speed of a wave is given by the disper-
sion relation ω(k) =

√
g‖k‖, where g is the gravitational constant. Based on observations from

oceanography waves can be modeled statistically independent and normally distributed. There-
fore, the amplitudes

ĥ0(k) :=
1√
2
(ξr + iξi)

√
Ph(k)

are realized using Gaussian random numbers ξr and ξi modulated by a spectrum. Out of many
alternatives we chose the Phillips spectrum

Ph(k) := A
e
− 1

(‖k‖L)2

k4
|k ·w|2

A Phillips constant
L = v2

g Largest wave for windspeed v

w wind direction

which considers parameters like wind speed and direction. For the sake of completeness we mention
that the gradient vector of the height field can be computed using the Fourier transform as well.
This yields more precise normals for shading as those computed by finite differences.

3.1.1 Implementation

The synthesis of stochastic fields on rank-1 lattices consists of the following choices and decisions:

Number n of lattice points: Although rank-1 lattices exist for any number of points in any
dimension, the fast Fourier transform is most efficient for n being a power of 2.
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Generator vector g: In order to maximize the sampling efficiency we select a generator g that
maximizes the minimum distance of the dual lattice. If the generator vector has Korobov
form, i.e. g = (1, a, a2, a3, . . .), the spectral test [Knu77] can be used to efficiently compute
the minimum distance for each candidate a. While not true in general, for dimension s = 2
and n as a power of 2, one of the two components of the generator vector g =

(
a1
a2

)
has to

be odd (w.l.o.g. gcd(a1, n) = 1). Otherwise points would coincide resulting in an obviously
useless minimum distance of 0. Then for every j with gcd(j, n) = 1 every vector xj =
jg mod n is a generator vector of the same lattice (generator of the cyclic group), too, and
there must exist an l ∈ {1, 3, 5, . . . , n−1} with xl =

(
1
a

)
. Thus a generator vector in Korobov

form exists that obtains maximized minimum distance and the spectral test can be used.
A list of all parameters for 2-dimensional maximized minimum distance rank-1 lattices is
found in Table 1.

Basis V : V is determined as a Minkowski-reduced basis, which defines the Delauney triangulation
that is used as the triangle mesh. Table 1 lists these basis vectors, however, multiplied by
n. Given a generator vector in Korobov form, the first coordinate of each of these integer
basis vectors is the increment or decrement to find the index of a neighboring lattice point.

Wave vectors Kn: We enumerate all wave vectors in a conservative bounding box of the funda-
mental Voronoi cell of the dual lattice and select the shortest ones. As a simple conservative
convex hull we chose the axis-aligned bounding box determined by the direct lattice point
neighbors of the origin. A much more involved approach is to compute the fundamental
Voronoi cell in the dual lattice and rasterize it on the integer lattice.

3.2 Stable Simulation of Fluids

The stable fluids algorithm by Stam [Sta99] is a practical way of simulating incompressible fluids
for animation. Note that the algorithm focuses on realtime simulation rather than on precision.
The simulation is based on the Navier-Stokes equations

div v = 0 (3)
∂v

∂t
= −(v · ∇)v + ν∆v + f (4)

for incompressible fluids, where v is the velocity field, ν the viscosity, and f are the external forces.
The solution strategy is to simulate equation (4) and remove the divergence (3) at the end of each
time step by using a projection based on the Helmholtz-Hodge decomposition w = v +∇q, which
states that a vector field w can be decomposed into a divergence free part v and the gradient of a
scalar field q. The velocity field for the next time step t + ∆t is computed in four steps [Sta99]:

1. The external forces are added: v1(xl) := v(xl) + ∆t · f(xl)

2. The advection is computed by tracing back a particle back in time starting from point xl

according to the velocity field. The position p(xl,−∆t) is computed by dividing the time
step ∆t into smaller time steps and performing the Euler rule for each of the small time steps
(see the illustration). The velocities v2(xl) := v1(p(xl,−∆t)) are linearly interpolated using
the closest lattice points. Due to linear interpolation the method is named stable, because
the computed velocities never can exceed the old ones in magnitude.
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3. The diffusion by the Laplace operator is efficiently computed as low pass filter in the Fourier
domain. The Fourier coefficients are computed by

v̂2(kj) :=
n−1∑
l=0

v2(xl)e−2πi jl
n

and filtered

v̂3(kj) :=
v̂2(kj)

1 + ν∆t · (kj · kj)
.

4. The divergence is removed using the projection

v̂4(~kj) := v̂3(~kj)−
(kj · v̂3(~kj))kj

(kj · kj)

and the velocity field at time step t + ∆t is synthesized by

v4(~xl) :=
n−1∑
j=0

v̂4(~kj)e2πi jl
n .

3.2.1 Implementation

The stable fluids scheme has been implemented for two- and three-dimensional velocity fields as
illustrated in Figure 6. The Fourier transformation techniques are the same as in the previous
application example, except that they have to be performed for each component of the vector
fields.

For linear interpolation (as required in step 2 of the algorithm) on a rank-1 lattice, the
Minkowski-reduced basis V is used to access neighboring lattice points.

Scaling all lattice points by n results in integer coordinates for all xl and the basis V .

Frame: Representing the velocity field v in the basis V avoids a transformation during interpo-
lation. In this case external forces usually have to be transformed into the basis V .

Accessing lattice cells: The backtracking step requires to compute the index of a lattice cell
containing a given point, which is simple if the lattice is given in Korobov form: Multiplying
the basis matrix V by the integer parts of the coordinates of the point modulo n yields a
lattice point in Cartesian coordinates. Obviously the first component is the lattice point or
cell index. Neighboring lattice points for interpolation now are found as described in the
previous example.
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Figure 6: Left: The four images are subsequent snapshots of the stable fluid simulation on a
rank-1 lattice. The arrows indicate the external forces applied to the periodic fluid. The fluid
transports the background image and the effects of advection and diffusion, i.e. blur, are clearly
visible. Right: Snapshot of a wind field simulation in three dimensions for the lattice L32768,g

with g = (1, 10871, 108712), where smoke is transported in a velocity field.

4 Conclusion

Spectral synthesis and simulation on rank-1 lattices can be implemented efficiently. Independent
of the dimension s only a one dimensional Fourier transform is needed. Additionally the approx-
imation can be more accurate than on a tensor product lattice [LH03, KSW04, DKKS]. It is
also notable that the isotropic measure of maximized minimum distance can replace the classical
measures like e.g. discrepancy (see the sampling efficiency of the Fibonacci lattice in Figure 4)
often used in connection with rank-1 lattices. This measure also provides best visual quality.

In the future we like to extend our ideas to hierarchical approaches using lattice sequences and
explore optimizations for anisotropic spectra. Moreover we will explore non-periodic boundaries.
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i n = 2i generator g basis vectors V = (v1v2)
2 4 (1, 2) (2, 0), (1, 2)
3 8 (1, 3) (2, -2), (1, 3)

(1, 5) (2, 2), (1, -3)
4 16 (1, 4) (4, 0), (1, 4)

(1, 12) (4, 0), (1, -4)
5 32 (1, 7) (4, -4), (5, 3)

(1, 9) (4, 4), (3, -5)
(1, 23) (4, -4), (3, 5)
(1, 25) (4, 4), (5, -3)

6 64 (1, 28) (7, 4), (2, -8)
(1, 36) (7, -4), (2, 8)

7 128 (1, 12) (11, 4), (1, 12)
(1, 116) (11, -4), (1, -12)

8 256 (1, 30) (9, 14), (17, -2)
(1, 226) (9, -14), (17, 2)

9 512 (1, 200) (18, 16), (23, -8)
(1, 312) (18, -16), (23, 8)

10 1024 (1, 271) (34, -2), (15, -31)
(1, 495) (2, -34), (31, -15)
(1, 529) (2, 34), (31, 15)
(1, 753) (34, 2), (15, 31)

11 2048 (1, 592) (45, 16), (7, 48)
(1, 1456) (45, -16), (7, -48)

12 4096 (1, 70) (59, 34), (58, -36)
(1, 4026) (59, -34), (58, 36)

13 8192 (1, 1530) (91, -34), (75, 62)
(1, 6662) (91, 34), (75, -62)

14 16384 (1, 1435) (57, -125), (137, -13)
(1, 6291) (125, -57), (13, -137)
(1, 10093) (125, 57), (13, 137)
(1, 14949) (57, 125), (137, 13)

15 32768 (1, 15936) (183, -64), (146, 128)
(1, 16832) (183, 64), (146, -128)

16 65536 (1, 25962) (260, -88), (53, -270)
(1, 39574) (260, 88), (53, 270)

17 131072 (1, 49531) (172, -348), (217, 323)
(1, 62899) (348, -172), (323, 217)
(1, 68173) (348, 172), (323, -217)
(1, 81541) (172, 348), (217, -323)

18 262144 (1, 1990) (527, 154), (395, -382)
(1, 260154) (527, -154), (395, 382)

19 524288 (1, 86592) (775, -64), (442, 640)
(1, 437696) (775, 64), (442, -640)

20 1048576 (1, 195638) (134, 1092), (879, -662)
(1, 852938) (134, -1092), (879, 662)

21 2097152 (1, 193293) (1226, -958), (217, 1541)
(1, 715835) (958, 1226), (1541, -217)
(1, 1381317) (958, -1226), (1541, 217)
(1, 1903859) (1226, 958), (217, -1541)

22 4194304 (1, 1120786) (363, -2170), (1699, 1398)
(1, 3073518) (363, 2170), (1699, -1398)

23 8388608 (1, 1671221) (1807, -2533), (3097, 301)
(1, 3288547) (2533, 1807), (301, -3097)
(1, 5100061) (2533, -1807), (301, 3097)
(1, 6717387) (1807, 2533), (3097, -301)

24 16777216 (1, 7605516) (2903, -3308), (1414, 4168)
(1, 9171700) (2903, 3308), (1414, -4168)

25 33554432 (1, 1905545) (405, -6211), (5582, -2754)
(1, 14462279) (6211, 405), (2754, 5582)
(1, 19092153) (6211, -405), (2754, -5582)
(1, 31648887) (405, 6211), (5582, 2754)

26 67108864 (1, 22282116) (6391, -6052), (8436, 2512)
(1, 44826748) (6391, 6052), (8436, -2512)

27 134217728 (1, 58928436) (9147, 8444), (2740, -12144)
(1, 75289292) (9147, -8444), (2740, 12144)

28 268435456 (1, 86198508) (682, 17592), (15577, 8204)
(1, 182236948) (682, -17592), (15577, -8204)

29 536870912 (1, 8370742) (11737, 21958), (24885, 814)
(1, 528500170) (11737, -21958), (24885, -814)

30 1073741824 (1, 78999493) (10221, -33695), (24071, 25699)
(1, 284281075) (33695, 10221), (25699, -24071)
(1, 789460749) (33695, -10221), (25699, 24071)
(1, 994742331) (10221, 33695), (24071, -25699)

31 2147483648 (1, 940574718) (38453, 31638), (8176, -49120)
(1, 1206908930) (38453, -31638), (8176, 49120)

Table 1: Parameters of all maximized minimum distance lattices in two dimensions with n = 2i

points for i = 2, . . . , 31. Note that the basis vectors are given in integer precision and have to be
divided by the number of lattice points.
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