
MAMPF: An Intelligent Cooking Agent for
Zoneless Stoves

Sven Reichel, Timo Müller, Oliver Stamm, Fabian Groh, Björn Wiedersheim, and Michael Weber
Ulm University,

Institute of Media Informatics,
James-Franck-Ring, 89081 Ulm, Germany

email: mampf@uni-ulm.de
video: http://vimeo.com/19938951

Abstract—The Multifunctional and Adaptive Meal Preparation
Facility (MAMPF) is a versatile and adaptive kitchen system
allowing even an inexperienced user to create ambitious dishes.
On the hardware side, the system controls hotplates by regulating
the temperature of heated regions to turn the attention to the
food actually being heated instead of the hotplate. Furthermore,
the user interaction with the computer system is adapted to
the requirements in a kitchen. On the work flow side, MAMPF
converts a recipe into a task tree which is used to guide the
user through the cooking process. By knowing the recipe, based
on a formal description specially developed for this system, the
optimal sequence of actions can be calculated.

The system is designed to support the user without limiting
spontaneity or creativity and can - if necessary - be used just like
any usual stove. Consequentially, the user always retains control
over the system, all settings can be overwritten at any point, and
the order of the tasks can be dynamically rearranged.

In order to prove the correctness of this concept, a prototype
has been implemented.

Index Terms—Smart kitchen, intelligent environment, cooking
support.

I. INTRODUCTION

The kitchen is still one of the most traditional places in our
modern society. Handwritten recipes and kitchen-secrets are
shared within families and are passed on from one generation
to another. Professional cooks prepare meals you would not
be able to imagine, rather than being able to reproduce them.
Those meals may not only catch others’ attention but even
attract and emotionally move them. MAMPF can even assist
beginner chefs with their cooking careers by adjusting the level
of detail used in the cooking instructions and thus replace a
cookery course.

Considering that many parts of our daily activities are
rapidly changing and being digitalized, cooking still is like
it was centuries ago. Of course there are new machines that
help ease the act of cooking in various ways but the act of
combining dozens of ingredients into a delicious meal is still
something which requires a lot of skill and experience. There
are many ways intelligent and ubiquitous computer systems
can help to ease the preparation of food, making it possible
for everyone to cook a large variety of dishes.

A system offering recipes and supporting the user lowers
the barriers of cooking unfamiliar dishes. Preparing a meal
instead of reheating frozen food or eating at the next fast

food restaurant may lead to a more healthy diet. By the
selection of ingredients based on the user’s preferences it is
possible to cook a larger variety of meals with less effort.
However, cooking itself does not have to be reinvented. Online
communities sharing recipes in combination with an intelligent
kitchen could make this vision come true.

MAMPF is a concept showing that ubiquitous computing
methods integrated into a kitchen are an effective way to
simplify the cooking process. It is the result of analyzing
the way of meal preparation and identifying steps, tasks, and
methods which can be extended and supported by computer
interaction and automation.

Thus, we convert the recipes into a machine-readable form,
which allows classification, sharing, rating, and comfortable
modification. After choosing the desired recipe, the instruc-
tions are displayed on a screen or explained via voice. We
invented a system that relieves the user of all tasks which
can be automated. Furthermore, it monitors the user in order
to recognize actions and purposes allowing him to work
freely without restrictions. For example, bringing water to boil
usually begins with filling a pot with water followed by putting
the pot onto an appropriate hotplate and adjusting the desired
heat level. Our concept reduces the explicit input in such a way
that the area covered by the pot is recognized and temperature
is automatically regulated.

First of all, we put our work in context to already existing
systems and ideas. After that we present a redesign of user
interaction in Section III, followed by theoretical aspects
of cooking needed to supply an intelligent cooking agent.
Section V shows a prototypical implementation enhanced by
a recipe guidance with modified induction cookers which are
controlled automatically according to a recipe. MAMPF is
only a first step to provide a rich, user supporting, intelligent
environment, thus we give a short prospect how improvements
can further automate the cooking process.

II. RELATED WORK

Our work can be roughly classified into three different
domains: the hardware with induction hot plates, cooking
theory including specification of recipes, and intelligent agent-
systems for user interaction. Various works have been consid-
ered for each of these categories.

pothead
Schreibmaschinentext
Author version. Definitive version at ieee.ieeexplore.org



The stove represents the essential part of the hardware
domain. Currently, more and more nearly-zoneless stoves
with multiple induction plates are proposed, as described by
Forest [5] or in “Rendez-vous”, a commercial concept by
AEG [4]. Furthermore, the control mechanisms are undergoing
significant changes as AEG already uses touch screen interac-
tion [1]. We expand the stove control by replacing it with an
automation based camera system for pot tracking. To identify
the cooking utensils a combination of template matching [19]
and SURF [3], [9] is used.

More and more kitchens are going to be equipped with
sensors, actors, and intelligent systems. Those systems are
able to analyze the context, monitor the users actions, and
adapt the cooking processes if necessary [17]. Different agent
systems have been developed to display recipe information
to the chef [7], [18], [11]. We extend these approaches by
not only presenting the cooking process but automatically
adjusting the stove and subsequently propose a dynamic order
of the actions to prepare a meal.

To be processed by a computer system, the recipe has
to be based on a formal specification, like suggested in
[6]. Nevertheless, we aim to keep it as simple as possible
and analyzed cooking sequences with the help of [12], [15]
and [11]. Thus, we can not only specify a recipe but present
an elaborate representation which determines dependencies of
different actions, ingredients and cooking utensils.

Object detection, recognition, and tracking with the aid
of cameras is already wide-spread and different methods are
established [9]. Camera independent solutions are another
possibility as induction cookers can sense the presence of a
magnetic vessel [21], [16].

III. REDESIGN OF USER INTERACTION

Heating a pot is commonly associated with lighting up
a fireplace or switching on a hotplate. In both cases the
interaction is bound to that specific spot which emits heat and
a pot needs to be put on top.

The technical possibilities have been developing and, in-
stead of primitive fireplaces or standard stoves, high-tech
kitchens containing multiple sensors and actors are available.
Combined with some computing power, the different facilities
of modern user interaction can be implemented and enable a
new cooking experience.

Once the cooking process has been analyzed and split up
in disjoint actions and items (see Section IV-A) the steps can
be mapped to new ways of interaction like speech recognition
or touch-panels. The latter are currently finding their way into
consumer induction stoves.

Beside the different controlling options, the stove itself can
be modified as well. Nowadays, stoves mostly consist of four
explicitly defined hotplates. Breaking up this structure and
thereby the forced interaction with the hotplate was one of
the main research goals. As we regard cooking as a learned
ability, we assume that developments and changes concerning
the control of a stove will be adopted by users.

In the following the new approach is presented. The ad-
vantages of a zoneless stove lead to the idea of implicit
interaction. Finally, we suggest methods of modern interaction
which allow explicit input where implicitness might not work.

A. Zoneless cooking

The current standard stoves impose the following major
restrictions:

• The number of hotplates limits the number of vessels
which can be heated at the same time.

• Positioning vessels freely on the stove is not possible.
• Moving a vessel from one hotplate to another means

manually changing the heating settings.
The first and the second problem are correlated and can be
solved by using multiple modular hotplates which then -
aligned like honeycombs - can be used to cover the whole
stove [5]. With this technique, vessels may have unrestricted
movement and thus will always be heated in an optimal way as
heat is emitted across their entire footprint. Still, the hotplates
themselves have to be activated and deactivated. Handling
such a stove with usual switches would be unacceptably
complex as there are too many hotplates to control and no
specific classified regions. As a result, the vessels on the stove
stay under control of the user while covered hotplates are
automatically recognized and activated by the system. Thus, a
relocation of a pot or pan triggers a change of hotplates being
used to heat that vessel. As a result, all hotplates covered by
pots and pans might be heated while the others stay cold.

It is necessary to identify and track the vessels and map
pot positions to the hotplates underneath. Object detection,
recognition, and tracking with the aid of cameras is already
wide-spread and different methods are established [9]. Other
solutions take advantage of the fact that the power consump-
tion of the hotplate depends on the cooking utensils [21], [16].
However, identifying and tracking a vessel using only one
monitored value is more complex and other local information
is difficult to extract. Due to high temperatures and effects
from induction hotplates the use of electronic devices, bar
codes or other kinds of tags to identify different cooking
utilities is very problematic. Tags made of plastic or paper
might start to burn while RFID tags and readers are addi-
tionally affected by electromagnetic fields which disturb the
communication or even destroy electrical parts. So there is a
need to recognize the cooking tools from distance.

We consider pot detection and tracking via camera a useful
and cheap solution, as a standard webcam is sufficient (see
Section V-B). However, our concept works with resistance
sensors as well which might be more elegant for commercial
products as sensors are embedded and no calibration is needed.

B. Focusing the vessel and implicit interaction

Given a zoneless stove with detection and tracking capa-
bility, the computer is aware of the location and mapping
information of each pot and is able to adjust its heat. With
even more contextual information, and a set of rules, the user’s



intention can be derived and thus implicit interaction may be
achieved.

A system that is not only aware of what is being cooked
and which ingredients and cooking utensils are used, but even
knows the actual progress within the cooking process, opens
up a further context of temporal-semantic quality. This context
allows the software to derive the most probable interaction in-
tended by the user, which is the basis for implicit interaction. I.
e. when the recipe demands a pot to be heated up to a specific
temperature the system triggers the object recognition to wait
for a pot to be put on the stove. The placement of the pot on the
stove is the only action the user has to execute. Afterwards the
system controls the pot autonomously according to the recipe.
As a result, the heat setting is associated to the pot instead
of the hotplate, which allows the chef to concentrate on the
pot and does not have to cope with the technical details of the
stove.

Summing up, we facilitate the cooking process by removing
the intermediate stage of explicit temperature control at the
stove and instead enable the direct manipulation of cooking
utensils.

The next step would be to extend the interaction with pots
to the interaction with single ingredients. By recognizing them
as described in Section VI-A this can be done implicitly as
well. This would lead to the tracking of the entire cooking
process beginning with the preparation phase with a minimum
of explicit interaction with the system.

C. Necessity of explicit control

In any case, the cook needs to stay in control and has to be
able to adjust the settings manually. Especially if recipes are
faulty or cooking without any recipe is desired. Furthermore,
the ability of applying changes to the cooking workflow is
essential (e.g. to extend the heating time of a pot if the software
turns it off too early).

Then again, the software might not detect a pot which has
been put on the stove or might not be able to track an already
detected pot anymore. Generally, this should not terminate the
whole process. Therefore, explicit user input is necessary, i. e.
to (re-)register the vessel.

However, in some other cases implicit interaction is not
sufficient. Setting up the environment or even handling emer-
gency cases like overboiling and burning require explicit input.
Automatic detection might fail but control over the system has
to be guaranteed. These inputs can be realized by standard
point-and-click devices, touch panels or pads, and speech dia-
log systems. We suggest a context-sensitive speech recognition
which is capable to interpret each command according to the
current situation (see V-D) and allows hand-free control.

IV. INTELLIGENT COOKING AGENT

MAMPF is equipped with an intelligent agent which guides
a user through the cooking process. The system gives clear
advice and automates as much steps as possible - for example
heating a pot on time according to the recipe. Furthermore,
it tracks time and status information during the preparation

and presents it to the user to achieve an overview of the
actual cooking process. That is why the system needs to
know each step in a recipe as well as ingredients, cooking
utensils, and time information. In order to provide all this in a
computer readable format, we developed a formal specification
for recipes. The guidance always supports the users and does
not restrict their abilities, so changes can be made dynamically.
This prevents the failure of a recipe even if it contains a
mistake or a discrepancy between the specified requirements
and the actual resources. Additionally, if the user misses a
cooking step the agent will indicate it, thus preventing the
user from making mistakes.

A. Cooking theory

As described by David A. Mundie in “Computerized Cook-
ing” [12], recipes contain a way to describe the preparation
of a meal and can be expressed in a mathematical formula,
but are usually authored in colloquial prose. This form is not
compatible to computer systems so heuristics to parse prose
or a special computer readable format for recipes is needed.

One major purpose of MAMPF is that it is easy to use, so
a recipe should only contain essential information, making it
as easy as possible for the user to specify. As described in
Section II, other solutions like recipeML already exist, but
according to our experiences they are too complicated for
the users to work with. So we had to develop a new recipe
specification for our purposes.

The cooking domain consists mainly of four parts: actions,
food, recipes, and utensils [15]. At the beginning, meta infor-
mation of a recipe like title, author, categorization, and number
of people considered are specified. Secondly, it contains the
needed ingredients and for each a certain amount and a unit,
e.g. 500g Spaghetti. Furthermore, to each ingredient a recipe
unique identification number is added to obtain references
between ingredients and a recipe’s step. Moreover, the in-
gredients are treated by kitchen utensils which we call tools.
Each tool has its own identification number. To express the
recipe’s workflow we use eight different kinds of steps. Each
one references different numbers of tools and ingredients - this
is expressed in brackets - e.g. (1/2) means this step needs one
ingredient and two tools. Thus, we obtain context information
of the step.

Here is a list of actions we distinguish, including the
maximum amount of ingredients and tools involved:

• PUT ingredient into tool (1/1)
• OUT remove anything from tool (1/1)
• JOIN the content of two tools (0/2)
• ON STOVE put a tool onto the stove (0/1)
• OFF STOVE remove a tool from the stove (0/1)
• DO TASK do a task (e.g. stir) (2/2)
• DO CONTENT do a task with tools (0/2)

DO TASK and DO CONTENT have optional tools and ingre-
dients as well as a required plain text field. This contains action
information to explain the action to the cook, for example
cutting, stirring, or mixing. It is not possible to predefine these
actions since they are uncountable. There is no requirement



Fig. 1. Onion state machine

that the system needs to understand these actions, so they are
kept is a plain text string. This also makes it possible for the
user to define actions as precise or vague as they are needed,
depending on the skill level of the user to whom the recipe is
addressed.

As described in Section IV-C, each step contains its average
preparation time. Additionally, it can have three different
triggers, which describe the system’s reaction to the step. They
are defined in the following way:

• TEMP sets the temperature of a tool
• TIME starts a timer after which a message is displayed

and the used tools are turned off
• CONFIRMATION displays a message to remind the

user observing something and has to be confirmed when
the described state is reached (e.g. onions are golden
brown)

The cooking process is based on state machines of ingredients
and tools. That means each of them has a different current
state and transitions representing actions, leading via other
states to the final result. Figure 1 shows a simple example
of an onion’s state machine which has three states and two
transitions, though more states can be added, e.g. sliced, diced.
As an action can perform a change of up to two ingredients
and two tools, the confirmation of a step can trigger up to four
transitions of different state machines.

The processing order of steps needs to respect each state
machine of a tool and an ingredient, for example the onion in
Figure 1 has to be cut before getting roasted. Therefore, a step
can only be confirmed if all concerning state machines are in
a state where each transition can effect a state change. This
guarantees that no state of a state machine is skipped. For
this purpose we use a dependency tree which expresses the
dependencies of steps. The leaves of the tree reflect the raw
ingredients, the root the final meal. To create this tree, the
order of steps in a recipe’s specification is essential. Based
on that we construct the state machines and furthermore the
connections of the tree. So each recipe will create one tree.
Figure 2 shows a recipe with five steps. Step1 uses tool
t1 and ingredients i1 and i2. As Step3 processes the same
ingredient as Step1 (i1) and as Step2 (i3), it depends on these
two steps and therefore can only be processed if Step1 and
Step2 are confirmed. When cooking more than one recipe
simultaneously, it is possible to connect the trees with a special
join step in parallel or as a sequence - in that case we have a
graph.

B. Processing

One major goal of our system is to keep things simple for
the user and not to dictate the cooking process. That means
the user can rearrange the tasks as far as they do not depend
on others. By presenting all executable steps at the same

Fig. 2. Dependency tree of one recipe

time, the user might get confused. Therefore, we propose a
sequential step list but allow scrolling the list to choose which
step to perform next. The step with the highest priority is
always highlighted (see Section V for the System’s display
possibilities). Each step is displayed until the user explicitly
confirms the step. After that, all triggers are processed and
the next step is highlighted. As a result, the dependency graph
needs to be transposed into a sequential list. This is done
according to the recipe’s specification and can be optimized
according to the preparation times derived from the user profile
and the available cooking devices and tools. Thus, the idle
time in a recipe can be minimized and the shortest preparation
duration can be reached.

During the execution of a cooking workflow each step can
have five different states:

• waiting not active, can be selected manually by the chef
via the scrollable step list

• pre-execution check whether all dependent steps are in
state done

• execution show actions to do, including used tools and
ingredients. Currently, this is clarified by images and
spoken language but a video or any other graphical help,
as suggested in [18], may be possible.

• post-execution all triggers are executed, that means the
temperature is set and timers are started

• done a step is confirmed and all TIME and CONFIR-
MATION triggers are finished

A user interaction is necessary to transfer a step from the
state execution to the state post-execution. If there are any
active triggers attached, the user needs to validate or cancel
them explicitly. This can be done by touch, gestures, or speech
but as mentioned in Section III also by implicit interactions.
Furthermore, this confirmation can be done by recognizing
the current cooking state with different kinds of sensors in the
kitchen [11].

During the cooking process, the system measures time infor-
mation and thus can predict the finishing time. Additionally,
the user can always monitor the current process and active
cooking tools. For example, in a short overview he sees which
tool is heated for how long and which one needs special
attention so that the ingredients do not get scorched. The tools
on the stove have to be mapped to tools in a recipe, in order
to display a label for each tool and preventing a mix up.

C. Learning

For reliable prediction of the preparation time and providing
meaningful timing cues it is necessary to have detailed timing



DB

Remote Input 
Device

Database Local PC

USB Induction Hotplates

Camera

Fig. 3. MAMPF overview: How the components are connected to the system

information for each step. A cook’s skill ranging from amateur
to professional and also the equipment of a kitchen have great
influence on the preparation times. It is necessary to measure
the actual duration of each step and continuously update the
overall duration. Additionally, we store the required cooking
time for each user and adapt the predicted duration each time
the recipe is executed according to following formula:

Tnew =
Told · PrepCount + ∆t

PrepCount + 1

Where PrepCount includes the number of times a recipe was
already prepared by this user.

In addition to the preparation time of each step, it would
also be possible to adapt the heating times of the vessels
on the stove. They may vary according to the amount of
ingredients, the material of a pot respectively pan, and other
kind of influences. At this stage, the user has to monitor the
stove if one cooks with a different configuration than specified
and eventually turn down the heat or increase the time before
the ingredients are done. To predict a precise cooking time on
varying configurations, more research is necessary on how the
amount of ingredients change the heating time or how different
pans or pots affects it.

V. IMPLEMENTATION

The MAMPF prototype consists of the following compo-
nents: the main system running on an ordinary PC, a display
presenting the cooking agent screen, three induction hotplates
with 2000W each connected to the PC via USB, a camera
which is directed towards the stove, a touchscreen device for
remote control, as well as a sound system for speech synthesis
and recognition (see Figure 3 and Figure 4). A presentation
video of the prototype can be found online[14].

Due to limited resources, it was not possible to develop
a zoneless cooking area for our prototype as proposed in
Section III-A, so we had to draw on three ordinary hotplates.
Anyway we implemented a pot detection and therefore our
prototype tracks the movement of vessels from one hotplate
to another and automatically regulates the temperature of the

hotplates. In our implementation, the amount of hotplates
which can be connected to the system is not limited.

For safety reasons, we preferred induction cookers equipped
with temperature sensors for our prototype, which were en-
hanced by micro controllers and USB ports (Fig. 7). The
hotplates are able to detect a pot, and turn themselves off
when there is no vessel located in the range of the heating
area. The vessel is directly heated by an oscillating magnetic
field, so the surface of the devices is just heated indirectly by
the vessel, and cools down immediately after removing the pot,
minimizing the risk of injuries. But also energy efficiency and
quick response times to temperature adaptation are appreciable
advantages of induction cookers.

One innovation of our system is the substitution of hotplate
interaction by directly using pots and pans. Subsequently, jobs
have to be assigned to heatable tools which are located on
the stove region. Additionally, dynamic information which
changes due to cooking processes and static information like
hotplate positions are considered during calibration. In the
calibration process the user can capture images of kitchen tools
as templates for the pot detection via webcam and customize
the individual hotplate characteristics like number of, sizes and
positions.

The architecture is based on autonomous modules written
in C#, using a publish/subscribe-event-driven model for com-
munication. Each event that is published to the event flow
is received by all subscribing modules individually. Figure 4
illustrates an overview.

In the following sections, the individual software modules
the MAMPF prototype consists of are described in more detail.

A. Intelligent Agent Module

As described in Section IV, our system is able to guide
the user through the cooking process. Recipes are saved on a
local database and can be exported as XML-Files supporting
an easy exchange between different users.

Different tasks need to be completed to enable the cooking
support. The first step is to select and load a recipe from the
database before starting the cooking process. Then, the recipe
is transferred into a dependency tree as well as a step-list
representation. This step list is displayed during the cooking
process. Furthermore, once a step is accomplished the next
step is read aloud to keep the user focused on ongoing tasks.
According to the recipe’s specification, all steps are executed
and temperature instructions are sent to the hardware module.

Time triggers are tasks that need to be executed after a
certain period of time and are automatically managed by
the system. Each time trigger starts a callback timer, which
is initialized with the specified time and executed after its
expiration.

As seen in Figure 5, the main components of the intelligent
agent’s UI are the serial step list and the time triggers. As
an experimental case we cooked Kaiserschmarrn, a typical
Austrian dish. For the step list we used a scrollable coverflow,
which presents a description of the current step and a brief title
of the following. In the shown example, the user should put the



Event-flow

Hardware Pot 
Detection

Intelligent
Agent

Interaction

Local
Database

CameraHot PlatesScreenTouchscreen
Device

Micro &
Speaker

SDS

Recipe
Database

Fig. 4. Implementation overview: Blue: MAMPF software modules Red: Hardware components Yellow: Recipe databases e.g. web servers

Fig. 5. Screenshot of the Intelligent Agent presenting a recipe

butter into a pan. After confirmation of the step it disappears
and “Put almond slivers in Large Pan” moves forward showing
a detailed description. On the right hand side we see the time
triggers, which means the sultanas need to stay in the small
bowl for 29:34 minutes.

B. Pot Detection

Generally, there are many algorithms to find and track
objects depending on the input type and affordances like real
time capability, maximum error, and object properties. Con-
sidering that the implementation goal was to build a system
with limited resources, only one camera on top of the stove
captures images which are then interpreted by a processing
chain as shown in Figure 6. Pots are finally extracted using a
SURF-template approach [3]. Hereby, a state machine controls
searching areas and frequency for each pot depending on four
different pot states (see Figure 8). Pots which are in the ON
STOVE state are not searched for, since the position is known
and updates are only made if movement around that position
is recognized. If a pot is OFF STOVE, the system compares
it to whatever object enters the stove. FOUND and LOST are

transfer states in which pots reside for a certain amount of
time. This assures that pots do not mistakenly change their
state due to bad frames containing occlusions or image noise,
which influence the feature recognition. A linear least squares
approach is used to finally estimate and track the exact pot
position from the matching features.

C. Hardware

The main goal of the hardware module is to autonomously
execute the tasks which are defined by the cooking agent or the
user. Therefore, the module is equipped with a ticket system
which stores a maximum of one ticket for each registered tool.
Tickets precisely define the jobs, which have to be executed by
the hardware system, e.g. temperature and duration settings.
Hence, each task received by the module results in creating a
ticket or in updating an existing one.

The hardware module implementation also includes an
algorithm, which matches a given pot location to the subjacent
hotplates. However, the approach of using precise positions
even allows the replacement of those hotplates with arbitrarily
small induction patches which form a zoneless stove, enabling
unrestricted cooking on the entire surface area.

Fig. 6. Processing chain of the Pot Detection Module



D. Interaction

The MAMPF prototype offers two different interaction
possibilities, a touch screen device and a speech dialog system.
The remote device is connected via WLAN and provides
interaction possibilities for the intelligent agent as well as the
complete stove and grants the user full control of the system.
Nevertheless, the intelligent agent has the possibility to change
the instruction set during cooking to adapt to the user interface.

The touch device is only useful up to a certain point as
it needs to be operated by hand and is sensitive to heat
that might evolve from splashy oil. For this reason we also
implemented a speech dialog system using the abilities of
Windows 7 with Microsoft’s Speech API to recognize speech
and give auditory feedback to the user. A predefined grammar
according to the system’s context is used for recognition.
The instructions are produced by a text-to-speech system that
allows each module to send arbitrary text. Currently, only the
cooking agent uses these features. As a first implementation
it lacks the possibilities of natural communication and needs
improvements in the future.

Further, the system enables different users to create their
own profile to adaptively provide assistance according to the
users’ personal skills. The history of each user is stored within
the local database. Thereby attained information about step
durations is then used to achieve better time estimation.

Fig. 7. Standard induction hotplate enhanced with USB port

VI. FUTURE WORK

Our first vision combined stove and dining table without the
limitation of hotplate regions. It provided the ability to cook
food, keep plates warm, support the users by guiding them
through recipes and regulating temperatures and timers.

The implemented system described in Section V presents a
first step towards this direction. It gives an idea of how our
approach may be used to simplify the selection of recipes,
the choice of ingredients and cooking utensils, the interaction
with the stove and the entire cooking process. Still, there are
lots of possibilities to make the system more intuitive and
further improve functionality and usability: the different types
of context can be utilized to track ingredients, utensils and user
interaction as it is mentioned in Section III, while different
system components can enhance the application spectrum.

A. Object Recognition

The camera provides information about pots, pans, positions
and movements to the system. A more sophisticated sensor
network covering most parts of the kitchen and consisting of

Fig. 8. State machine of each pot

infrared and CCD cameras as well as microphones and RFID
sensors could be used to recognize and track not only cooking
vessels but all kinds of objects e.g. by using RFID-tags,
particle filters or multi-input hidden Markov Models which are
extracted from the different visual input devices [2]. Enhancing
this approach with the recognition of cooking actions would
result in the possibility to spot and track ingredients throughout
the whole preparation. Figure 9 shows two ways to support
ingredient detection throughout time.

By the help off this information, the intelligent agent is
able to interpret the preparation progress and can automatically
confirm steps as it holds the current recipe state and therefore
knows which step should be performed next. A similar method
that uses the idea of recognizing the base of an object and
keeping the identity throughout the manufacturing procedures
is presented in [20].

B. Interaction Recognition

As recipes represent a major part of the supportive system,
they need to be well defined to guarantee a good understanding
and easy handling. Machine Learning algorithms could be used
to enhance the usability and implicitness of recipe creation
and editing. Each interaction of users, utensils and ingredients
could be recognized and classified. This way, the system could
record and interpret the cooking steps and put them into a
semantic and temporal context [13], [8].

C. Failure Avoidance

Cooking leaves a lot of space for failure. Food might be
prepared too early or too late, burn or boil over. A combination
of heat sensors, cameras and ionization detectors could prevent
those types of mistakes and automatically regulate the cooking
temperature or warn the users. For example, if the temperature
of a pot filled with milk gets dangerously close to the burning
temperature or the milk starts to build foam, the system could
cool down that pot and save the user from the trouble of
cleaning or even a fire breaking out.

D. Flow Graph Optimization

Cooking implies consistently rearranging preparation steps.
On the one hand, most dependencies of different tasks are
parallel and do not need to be fulfilled at a specific point in
time. On the other hand, some steps cannot wait or need to
take place as early as possible. Therefore the optimization of
the recipe workflow is an important issue to provide sufficient
help for the users and needs to be adapted to the number of



Fig. 9. Object recognition and tracking on an object base [20] Left:
Recognition of an apple by its homogeneity Right: Recognition of an apple
by its identity

chefs and their cooking skills. A combination of flow graphs
and state-machine-diagrams provide a good base for a user
adaptive cooking model as it is proposed in [10]. This type of
model would enable the system to calculate the starting time
of preparation only by knowing the time the user wants the
food to be done.

VII. CONCLUSION

The Multifunctional and Adaptive Meal Preparation Facility
is a feasibility study, examining the amount of facilitation con-
cerning cooking processes that can be achieved by computer
support. We concentrated on three core-elements: “zoneless
cooking” with focus on the vessel, implicit interaction, and
recipe guidance.

“Zoneless cooking” can be achieved with multiple suffi-
ciently sized hotplates linked together and controlled globally.
Context awareness allows implicit input, the cook can con-
centrate on the ingredients and not on controlling the stove.
Thus, different types of sensors provide a representation of
the kitchen’s state. In order to heat a pot, and not a hotplate,
a mapping between the pots on the surface and the hotplate-
array beneath it was achieved. This concedes the possibility
of implicitly interacting with vessels as they are tracked and
a limitation of possible intentions can be generated from a
formal translation of a recipe. The system contains several
state machines and is aware of the cooking utensils, ingredients
and actions to be taken. By these means it cannot only literally
navigate the cook through the cooking process but also decide
whether a vessel has to be heated or not. So, interaction with
the stove already starts with putting the pot onto it.

The exemplary implementation illustrates that the initial
aims can be achieved with simple methods and limited equip-
ment resources. As a next step other kitchen utensils as ovens,
microwaves, and fridges need to be implemented to create a
comprehensive kitchen support. The architecture of MAMPF
is designed to control a all kinds of devices, but yet the number
of suitable kitchen tools that can be connected to a computer
system is very limited. Obviously, after installing an intelligent
kitchen with connected devices, a user study is inevitable and
needs to be considered in future development of MAMPF.

Summing up, lots of improvement is to be done in view of
the long-term objective of a modern and networked kitchen
equipped with a sophisticated, stable, and implicit Multifunc-
tional and Adaptive Meal Preparation Facility.

REFERENCES

[1] AEG Electrolux. (2009) Aeg-electrolux maxisight mit multicolor-tft-
display. [Online]. Available: http://newsroom.electrolux.com/at/2009/09/
17/aeg-electrolux-maxisight-mit-multicolor-tft-display/

[2] T. Aono, H. Kimura, and Y. Yamauchi, “A food recognition algorithm
based on dish recognition,” in IECON 02 [Industrial Electronics Society,
IEEE 2002 28th Annual Conference of the], 2002, pp. 1445 – 1450.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust
features,” in Computer Vision and Image Understanding (CVIU), Vol.
110, No. 3, 2008, pp. 346–359.

[4] Electrolux Design. (2010) Electrolux rendez-vous concept.
[Online]. Available: http://www.electroluxdesignlab.com/2010/01/
electrolux-rendez-vous/

[5] F. Forest, “Frequency-synchronized resonant converters for the supply of
multiwinding coils in induction cooking appliances,” in IEEE TRANS-
ACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 1, 2007.

[6] The Recipe Markup Language (RecipeML), FormatData, 4918 Schuyler
Drive, Annandale, VA, USA, Apr. 2002. [Online]. Available:
http://www.formatdata.com/recipeml/index.html

[7] W. Ju, R. Hurwitz, T. Judd, and B. Lee, “Counteractive: an interactive
cookbook for the kitchen counter,” in CHI ’01 extended abstracts on
Human factors in computing systems, ser. CHI EA ’01. New York,
NY, USA: ACM, 2001, pp. 269–270.

[8] P. Lade, N. C. Krishnan, and S. Panchanathan, “Task prediction in
cooking activities using hierarchical state space markov chain and
object based task grouping,” in 2010 IEEE International Symposium
on Multimedia, Taichung, Taiwan, 2010, pp. 284–289.

[9] O. G. Luo Juan, “A comparison of sift, pca-sift and surf,” International
Journal of Image Processing (IJIP), vol. 3, pp. 143–152, 2009.

[10] K. Miyawaki and M. Sano, “A user adaptive cooking navigation system
using ubiquitous sensing environment,” in Applications of Digital Infor-
mation and Web Technologies, 2008. ICADIWT 2008. First International
Conference on the, Faculty of Information Science and Technology,
Osaka Institute of Technology, Osaka, 2008, pp. 378–383.

[11] ——, “A virtual agent for a cooking navigation system using augmented
reality,” in Intelligent Virtual Agents, ser. Lecture Notes in Computer
Science, no. 5208. Springer Berlin / Heidelberg, Aug. 2008, pp. 97–
103.

[12] D. A. Mundie. (1985) Computerized cooking. Culinary
Softwary Systems. [Online]. Available: http://www.anthus.com/Recipes/
CompCook.html

[13] Y. Nakauchi, T. Suzuki, A. Tokumasu, and S. Murakami, “Cooking
procedure recognition and inference in sensor embedded kitchen,” in
Robot and Human Interactive Communication, 2009. RO-MAN 2009.
The 18th IEEE International Symposium on, Dept. of Intell. Interaction
Technol., Univ. of Tsukuba, Tsukuba, Japan, 2009, pp. 593–600.

[14] S. Reichel, T. Mueller, O. Stamm, F. Groh, and S. Scherle. (2010)
Mampf: Video presentation of the prototype. [Online]. Available:
http://vimeo.com/19938951

[15] R. Ribeiro, F. Batista, J. P. Pardal, and N. J. Mamede, “Cooking an
ontology,” in Artificial Intelligence: Methodology, Systems, and Appli-
cations, ser. Lecture Notes in Computer Science, no. 4183. Rua Alves
Redol, 9: Springer Berlin / Heidelberg, Sep. 2006, pp. 213–221.

[16] W. Schilling, R. Dorwarth, M. Volk, and T. Schoenherr. (2005,
Oct.) Verfahren zur Topferkennung. [Online]. Available: http://www.
patent-de.com/20070719/DE102005050035A1.html

[17] M. Schneider, “The semantic cookbook: sharing cooking experiences in
the smart kitchen,” in Intelligent Environments, 2007. IE 07. 3rd IET
International Conference on, Sept. 2007, pp. 416–423.

[18] K. Tee, K. Moffatt, L. Findlater, E. MacGregor, J. McGrenere, B. Purves,
and S. S. Fels, “A visual recipe book for persons with language
impairments,” in CHI ’05: Proceedings of the SIGCHI conference on
Human factors in computing systems. New York, NY, USA: ACM,
2005, pp. 501–510.

[19] C. Wang and F. Wang, “A knowledge-based strategy for object recogni-
tion and reconstruction,” Information Technology and Computer Science,
International Conference on, vol. 1, pp. 387–391, 2009.

[20] Y. Yamakata, K. Kakusho, and M. Minoh, “Object recognition based on
object’s identity for cooking recognition task,” in 2010 IEEE Interna-
tional Symposium on Multimedia, Taichung, Taiwan, 2010, pp. 278–283.

[21] ZF Electronics GmbH - Cherry, Pot Detection Sensor, 2006.




