
homeBLOX: Introducing
Process-Driven Home Automation

Michael Rietzler
Institute of Media Informatics
Ulm University
89069 Ulm, Germany
michael.rietzler@uni-ulm.de

Florian Schaub
Institute of Media Informatics
Ulm University
89069 Ulm, Germany
florian.schaub@uni-ulm.de

Julia Greim
Institute of Media Informatics
Ulm University
89069 Ulm, Germany
julia.greim@uni-ulm.de

Björn Wiedersheim
Institute of Media Informatics
Ulm University
89069 Ulm, Germany
bjoern.wiedersheim@uni-ulm.de

Marcel Walch
Institute of Media Informatics
Ulm University
89069 Ulm, Germany
marcel.walch@uni-ulm.de

Michael Weber
Institute of Media Informatics
Ulm University
89069 Ulm, Germany
michael.weber@uni-ulm.de

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
UbiComp’13 Adjunct, September 8–12, 2013, Zurich, Switzerland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2215-7/13/09...$15.00.

http://dx.doi.org/10.1145/2494091.2497321

Abstract
Home automation promises more convenience for
residential living. We propose process-driven home
automation as an approach to reduce the difficulty of
specifying automation tasks without restricting users in
terms of customizability and complexity of supported
scenarios. Our graph-based user interface abstracts from
the complexity of process specification, while created
sequences are automatically translated into BPEL code for
execution. Our homeBLOX architecture extends a process
engine with the capabilities to communicate with
heterogeneous smart devices, integrate virtual devices,
and support different home automation protocols. We
report on initial user tests with our automation interface
and demonstrate the customizability and expressiveness of
our system based on realized example use cases.

Author Keywords
Home automation; UPnP; BPEL; Arduino; UCD; usability.

ACM Classification Keywords
H.4.m [Information systems applications]: Miscellaneous;
H.5.2 [Information interfaces and presentation]: User
interfaces.

Introduction
Home automation aims to enhance residential living
comfort by interconnecting household devices. However,
existing research and commercial platforms tend to be
closed environments with specifically tailored devices or
protocols. Most systems need to be set up by a specialist
or require extensive tinkering by passionate users [11, 14],
due to the heterogeneity of available devices and
protocols. Current home automation systems face the
dilemma of providing either usable applications with
somewhat limited individual control or highly flexible but
complex controls. We propose process-oriented home
automation as an approach to facilitate usable, yet highly
customizable home automation. Our homeBLOX system
combines a modular architecture for flexible integration of
heterogeneous devices and protocols with a graphical
abstraction that simplifies configuration of home
automation tasks as processes, while supporting complex
scenarios that exceed existing rule-based approaches.

Related Work
Several home automation approaches focus on providing
seamless interoperability. Busemann et al. [2] propose a
flexible connector system for sensor nodes, where modular
protocol adapters abstract from heterogeneous sensors.
ATRACO [10] provides a unified interface for context from
various sources. The GatorTech Smart House [4]
encapsulates a home’s sensor and actuator functions as
services. HomeOS [3] also provides programming
interfaces and services to manage and control a variety of
devices. These approaches assist the development of
versatile home applications, however, end users must hope
that their needs are covered by these applications.

Other approaches aim to make smart home configuration
usable for end-users. NinjaBlocks [12] provides a Web-

based rule engine geared towards less tech-savvy users.
Users can create a set of if-this-then-that rules that utilize
events and actions offered by the user’s devices. While this
approach allows individualized home automation, use of
many devices and automation scenarios likely results in a
complex set of hard to maintain and potentially interfering
rules. For the FHEM [8] home control server, multiple
user interfaces exist (e.g., device lists, remote controls,
device-floorplan models etc.), which demonstrate the
diverse requirements and complexity of home automation
interfaces. Kawsar et al.’s development tool [7] is a
tangible user interface that consists of an RFID reader
equipped with three buttons and LEDs. Each device and
application has a corresponding RFID card. The user can
place them on the reader and press a button to perform
an action (e.g., install or uninstall, run or close). The
tangible user interface has the limitation that the user has
only the opportunity to use applications a developer has
created. The Jigsaw Editor [5] uses the metaphor of
puzzle pieces to shape linear sequences. While it enables
end users to control their home automation intuitively, the
linear approach is not flexible enough to create complex
and context- sensitive home automation scenarios.

Process-driven Home Automation
While rule-based approaches to home automation
facilitate straightforward specification of simple rules,
more complex automation scenarios potentially result in
difficult to maintain rule sets. Pipeline approaches, like
Jigsaw Editor [5], lack the flexibility of working with larger
numbers of inputs and outputs. Tangible configuration [7]
facilitates management of smart devices, but is difficult to
utilize for specifying complex automation tasks. In
accordance with Kortuem et al. [9] and Kawsar et al. [6],
we propose to use processes to model human activities.
Processes have the advantage that they can model

temporal dependencies: a single process can describe an
automation sequence that combines events and actions of
di�erent devices at di�erent steps. Thus, context
information is aggregated over the course of a process
rather than having to describe the complete situation in a
rule� s condition. While processes have the potential to

Figure 1: Wizard to con�gure
the connection Getting up and
Co�ee Maker : event selection
(top), action selection (middle),
action con�guration (bottom).

simplify home automation, the user interfaces for
con�guring process engines, such as intalio | bpms,1 are
notoriously complex. To simplify process speci�cation, we
developed a graph-based process representation in which
each node constitutes an action of a device, and every
edge a triggering event. Wizards assist users in the
creation of automation sequences to reduce di�culty of
process de�nition. Our interfaces and interaction concept
were developed in an iterative user-centered design
process. User-speci�ed processes are translated into BPEL
code2 and executed by a process engine, which interacts
with home automation components. Our system further
abstracts from the heterogeneity of di�erent home
automation protocols. Protocol-speci�c controllers
forward incoming events from connected devices to the
internal middleware and trigger actions on them.
Light-weight drivers ease con�guration when integrating
new devices and abstract from speci�c protocols
supported by a device. Such drivers describe a device� s
capabilities and ensure consistent representation of devices
in the user interface. The homeBLOX architecture
consists of a middleware server for device management
and process execution and a set of smart devices placed in
the user� s home. A tablet application enables users to
manage automation sequences and interact with the
system. We �rst discuss the design and functionality of
the sequence editor before outlining the middleware
components and process execution.

1http://www.intalio.com/products/bpms/overview/
2BPEL = Business Process Execution Language

Figure 2: Sequence editor with an example sequence for
automating co�ee making and lamp control when getting up.

homeBLOX Sequence Editor
An Android-based tablet app provides the homeBLOX
user interface to create and manage automation
sequences (see Fig. 2). In the sequence editor, the user
creates sequences by dragging available devices,
represented as block icons (called blox), from the top tool
bar onto the canvas and drawing connections between
them. The canvas has a dedicated start area on the left to
place the triggers of a sequence, as user testing revealed
initial confusion about how to organize start conditions.
When multiple blox are placed in the start area, the user
is asked to choose the start semantics (logical AND or
OR). Drawing a connection line between two blox on the
canvas prompts a wizard, shown in Figure 1, to con�gure
the connection. The wizard guides through at most three
steps: event selection (ES), action selection (AS), and
action con�guration (AC). Only relevant steps are shown,
e.g. ES is skipped for connections originating from the
start area, as triggering events are already de�ned there.
AC only appears if the selected action has con�guration
parameters, e.g., the number of cups a co�ee maker

http://www.intalio.com/products/bpms/overview/

should brew. When a user draws multiple incoming links
to the same blox, two execution semantics are possible.
Therefore, the system asks the user if the blox� action
should be executed when any of the incoming edges have
been activated (OR), or only if all incoming edges have
been activated (AND). A blox corresponding to the user� s
choice is added automatically to the canvas (see Fig. 2).
Expert users also have the option to explicitly choose a
logic operator from the tool bar and drag it to the canvas.
Furthermore, already created sequences may be re-used as
subsequences to encapsulate recurring behavior. The
process representation in the sequence editor enables users
to quickly grasp the purpose and overview of a process.
To ensure clear arrangement of even complex processes,
we refrained from directly visualizing selected events,
actions and action parameters in the visual presentation of
sequences. Users can review and edit the con�guration of
edges by clicking on any device icon on the canvas.
Figure 3 shows the respective con�guration dialog.

Figure 3: Detailed con�guration
dialog for the alarm clock and its
outgoing connections.

Initial User Testing
The development of the sequence editor was interleaved
with user testing sessions for incremental re�nement of
the interaction concepts. We recruited 4 novices with
little to no touch experience and 4 expert touch users as
sample groups. None of the participants had any
experience with business process modeling. At the
beginning of each session, participants were asked to
freely explore the interface and given as much time as
needed to feel safe navigating it. Afterwards, they were
presented with 9 tasks related to sequence creation and 1
sequence recognition task. Participants were asked to
think aloud during task completion and the sessions were
video recorded. Subsequently, we conducted a
semi-structured interview to elaborate on di�culties and
user needs. User testing revealed, amongst other aspects,

that users employ diverse strategies to create sequences.
Some participants started by con�guring a sequence� s
trigger events, while others �rst dragged all needed blox
onto the canvas, or began with the sequence� s outcome.
As a consequence, our sequence editor does not
presuppose either strategy to equally support users
regardless of their entry point. Participants also
appreciated the redundant implementation of features,
e.g., removing blox by dragging them into a displayed
garbage can or o� the screen. It also became apparent
that users have a high demand for assistance and support
during sequence creation, which however should not
crowd the interface or impede the user� s interaction �ow.
Users found line and icon annotations helpful, however
they wanted them to be displayed only after explicit
request. Three older participants (1 novice, 2 experts,
aged 50+) helped to identify a number of age-dependent
requirements. They voiced a need for adjustable font size,
zoom capabilities, and help tutorials that let users proceed
at their own speed. We plan to address these issues in
future iterations to provide an inclusive user experience.

Home Automation System
Our home automation system consists of a server that
interacts with heterogeneous smart devices.

homeBLOX Server Architecture
To integrate and control devices and to execute sequences,
our server consists of several layers, as shown in Figure 4.
The controller layer is responsible for communication with
smart devices and forwarding their messages to higher
layers. The integration layer, represented by the Driver
Manager, manages registered devices and obtains
matching device drivers, In addition, a database stores
available knowledge about devices, deployed controllers,
and the user-speci�ed automation sequences.

Figure 4: Architecture of the homeBLOX server.

Our middleware uses the information gathered by the
integration layer to abstract from implementation details
and unify different protocols and devices for the higher
layers. The heart of the process layer is an Apache ODE
process engine, which executes automation sequences.
The Process Manager assists the process engine by
starting and automatically restarting completed sequences
and translating the user-created, graph-based process
representations into executable BPEL code. The
connector layer provides a control interface, which can
support multiple connectors for communication with GUIs
or alternative interaction means, e.g., voice control. When
a new device is set up in the home, it can connect to the
homeBLOX server via WiFi. A controller corresponding to
the device’s protocol (e.g. UPnP) handles communication
with the device on the controller layer. Based on the
device’s name, the Driver Manager obtains and loads a
driver that governs how the device is represented in the
sequence editor, e.g., by defining human-readable names

for the device’s events and actions. Various state variables
can be assigned to a defined range of values by using
comparison operators. This enables the user to choose a
named event instead of adjusting values. It is also possible
to define new actions in the drivers. These use the defined
operations of a device but with preset values. Our
middleware converts these specific action calls into action
calls supported by the device, so that the controllers do
not have to deal with it. Thus, our driver concept is very
different from operating system drivers. Rather than
enabling interoperability between devices, which is
handled by protocol-specific controllers, our drivers ensure
that devices have semantically meaningful representations
to enhance user interaction. User-specified automation
sequences are sent to the server’s GUI connector by the
tablet app. They are translated into BPEL code and
deployed on our process engine. Since ODE uses only
block-structured BPEL, the graph-based representation of
the automation sequence has to be converted accordingly.
For this purpose, we developed a BPEL template, which
already provides meaningful BPEL structures and
properties for the home automation domain, and is
completed with the user-specified sequence without
further need for BPEL-related user configuration. The
template allows us to automatically set concepts like
partner links, correlations, and other BPEL constructs.
The translation process also automatically decides how to
handle multiple outgoing connections from one blox. By
default an AND-split is used, while an OR-split is only
used if the chosen events’ range of values are disjoint.

Figure 5 shows how a sequence is executed in general.
Devices send updates of their internal state to a controller
(1), which maps values of state variables to specific events
defined by the device driver (2). The Event Manager
aggregates events and triggers the process engine (3).

Figure 5: Execution of a home automation sequence.

Some events represent a device state (e.g. light is on). To
make such states available to the process engine, the
State Manager keeps track of the device state (4) and
provides the last known values to the Event Manager (5),
which can generate respective event notifications (6). The
process engine evaluates processes to determine required
actions. The Action Manager receives resulting action
calls (7) and selects the responsible controller (8), based
on the device’s supported protocol. The controller then
communicates with a specific device (9), which executes
the action. The middleware itself is developed as a web
service, which offers operations to control the system and
receive information about registered devices. Thus, other
applications can also benefit from the semantic device
descriptions provided by our device drivers.

Smart Devices
Figure 6: homeBLOX-enabled
smart devices: (a) smart coffee
maker, (b) smart lamp, (c) light
sensor, (d) pressure mat, and (e)
smart vacuum cleaning robot.

Our homeBLOX testbed includes several types of devices,
some of which are shown in Figure 6. A UPnP controller
manages standard UPnP devices, such as an alarm clock
or media player. The virtual device controller facilitates
the use of online and system services, such as weather,
time, or calendars. Such services are encapsulated as

virtual devices. Virtual devices are applications that can
be deployed directly on the homeBLOX server and
subsequently register with the virtual device controller,
which is implemented as a SOAP-based web service. After
registration, virtual devices gather information from online
APIs or the system and send notifications to their
controller like real devices. Virtual devices can also
execute actions, such as posting online or sending a tweet.

We further integrated a number of sensors (e.g., pressure
mats, light sensors) and turned common household
appliances (lamps and a coffee maker), as well as a
cleaning robot into smart devices by equipping them with
Arduino or Raspberry Pi controllers. These smart devices
communicate with the homeBLOX system and can be
used in automation sequences. Hereby, the actual device
is treated as a sensor and/or actuator, whereas the
WiFi-equipped Arduino handls event and action
processing. In order to meet the limitations of the Arduino
platform, we defined a lightweight communication
protocol (homeSPEAK) for interaction with the server
and added a corresponding controller. When a device is
supposed to perform a specific action, e.g., “make 1 cup
of coffee”, it receives a respective message from the
responsible homeBLOX controller. The smart device has
to translate the command into hardware control
mechanisms. In case of the coffee maker, a physical
button click is emulated via electric current. In case of
our lamp, a WiFi-equipped power outlet is activated.

Example Use Cases
We evaluated two home automation uses cases with real
devices in our testbed to demonstrate the expressiveness
of process-driven home automation. The first use case
focuses on getting up and is partially inspired by Weiser’s
Sal’s morning use case [15], the second use case focuses

Figure 7: Automation sequence of the getting up use case.

on coming home. Note that each use case can be defined
with a single automation sequence in the homeBLOX
system, compared to multiple rules in a rule-based system.
The respective automation sequences are shown in
Figures 7 and 8.

Getting Up
When Birgit’s alarm clock rings at 7am (process trigger),
the bedside lamp and radio are turned on to help her wake
up. When Birgit gets up (pressure mat), the bathroom is
prepared by turning the lights on. When she enters the
bathroom (pressure mat), the playing music follows her,
i.e., the radio in the bathroom is turned on and the one in
the bedroom is turned off. When Birgit is done with her
morning routine and leaves the bathroom, the lights and
radio are turned off. Furthermore, the shutters in the
bedroom open and a cup of coffee is brewed in the
kitchen, while she gets ready. Leaving the house (pressure
mat) results in all lights being turned off to save energy.

Coming Home
Birgit programmed her vacuuming robot to clean while
she is not at home. When she comes home (pressure
mat), the robot immediately stops cleaning and returns to
its charging station. If it is already dark outside (light

Figure 8: Automation sequence of the coming home use case.

sensor), the lights in her apartment turn on automatically.
However, in case it is still light, the shutters in Birgit’s
apartment close instead. When coming home after work,
Birgit prefers a cup of coffee, thus, her coffee maker brews
a cup for her when she comes home on workday evenings.
Birgit realizes her coffee is ready when the apartment
lights blink shortly. This behavior is modeled by using
predefined behavior in a subsequence.

Conclusions and Future Work
Process-driven home automation and the homeBLOX
architecture facilitate complex home automation scenarios
with heterogeneous devices, while providing a user
interface that abstracts from underlying complexity
without limiting expressiveness. Consistent representation
of devices is based on drivers and protocol controllers,
which support the clear representation of automation tasks
as processes. In contrast to related work, configuration of
homeBLOX is process-driven rather than rule-based. User
testing in the iterative design process indicates that our
sequence editor enables users to effectively create and
recognize even complex automation scenarios.

We are conducting further user studies to evaluate the
effects of our process-driven approach on home
automation usability and refine our sequence editor. In
accordance with related work [1, 11, 13], we plan on
conducting home visitations to explore real-life use cases
and automation processes. In addition, we are working on
a community-based approach to build a repository of
drivers, controllers, and virtual devices created by users or
manufacturers. Further enhancements could be multi-user
support and personal user profiles. Resolving conflicting
sequences could be done with the help of dedicated room
owners or prioritizing users and their sequences in the
home. Deviations from activated sequences present
further challenges in that they require a compromise
between pervasiveness and user control.

References
[1] Brush, A. B., Lee, B., Mahajan, R., Agarwal, S.,

Saroiu, S., and Dixon, C. Home automation in the
wild: challenges and opportunities. In CHI ’11, ACM
(2011).

[2] Busemann, C., Gazis, V., Gold, R., Kikiras, P.,
Kovacevic, A., Leonardi, A., Mirkovic, J., Walther,
M., and Ziekow, H. Enabling the usage of sensor
networks with service-oriented architectures. In
MidSens ’12 workshop, ACM (2012).

[3] Dixon, C., Mahajan, R., Agarwal, S., eBrush, A., Lee,
B., Saroiu, S., and Bahl, P. An Operating System for
the Home. In NSDI ’12, USENIX Assoc. (2012).

[4] Helal, S., Mann, W., El-Zabadani, H., King, J.,
Kaddoura, Y., and Jansen, E. The Gator Tech Smart
House: A Programmable Pervasive Space.
Computer, IEEE 38, 3 (2005), 50–60.

[5] Humble, J., Crabtree, A., Hemmings, T., Åkesson,
K.-P., Koleva, B., Rodden, T., and Hansson, P.
Playing with the bits: User-configuration of

ubiquitous domestic environments. In UbiComp ’03,
ACM (2003).

[6] Kawsar, F., Kortuem, G., and Altakrouri, B.
Supporting interaction with the internet of things
across objects, time and space. In IOT ’10, IEEE
(2010).

[7] Kawsar, F., Nakajima, T., and Fujinami, K. Deploy
spontaneously: supporting end-users in building and
enhancing a smart home. In UbiComp ’08 (2008).

[8] Koenig, R., Haas, M., and Droegehorn, O. FHEM.
http://fhem.de/fhem.html.

[9] Kortuem, G., Kawsar, F., Fitton, D., and
Sundramoorthy, V. Smart objects as building blocks
for the internet of things. Internet Computing, IEEE
14, 1 (2010), 44–51.

[10] Meliones, A., Economou, D., Grammatikakis, I.,
Kameas, A., and Goumopoulos, C. A context aware
connected home platform for pervasive applications.
In SASO ’08 workshops, IEEE (2008).

[11] Mennicken, S., and Huang, E. M. Hacking the
natural habitat: an in-the-wild study of smart homes,
their development, and the people who live in them.
In Pervasive ’12, Springer (2012).

[12] Ninja Blocks Inc. The Ninja Platform.
http://ninjablocks.com/.

[13] Poole, E. S., Chetty, M., Grinter, R. E., and
Edwards, W. K. More than meets the eye:
transforming the user experience of home network
management. In DIS ’08, ACM (2008).

[14] Takayama, L., Pantofaru, C., Robson, D., Soto, B.,
and Barry, M. Making technology homey: finding
sources of satisfaction and meaning in home
automation. In UbiComp ’12, ACM (2012).

[15] Weiser, M. The computer for the 21st century.
Scientific American 265, 3 (1991), 94–104.

http://fhem.de/fhem.html
http://ninjablocks.com/

	Introduction
	Related Work
	Process-driven Home Automation
	homeBLOX Sequence Editor
	Initial User Testing

	Home Automation System
	homeBLOX Server Architecture
	Smart Devices

	Example Use Cases
	Getting Up
	Coming Home

	Conclusions and Future Work
	References

