100,000,000 Taps: Analysis and Improvement
of Touch Performance in the Large

Niels Henze
University of Oldenburg
Oldenburg, Germany
niels.henze @uni-
oldenburg.de

ABSTRACT

Touchscreens became the dominant input device for
smartphones. Users’ touch behaviour has been widely
studied in lab studies with a relative low number of
participants. In contrast, we published a game in the
Android Market that records the touch behaviour when
executing a controlled task to collect large amounts of
touch events. Players’ task is to simply touch circles
appearing on the screen. Data from 91,731 installations
has been collected and players produced 120,626,225
touch events. We determined the error rates for dif-
ferent target sizes and screen locations. The amount
of data enabled us to show that touch positions are
systematically skewed. A compensation function that
shifts the users’ touches to reduce the amount of errors
is derived from the data and evaluated by publishing an
update of the game. The independent-measures experi-
ment with data from 12,201 installations and 15,326,444
touch events shows that the function reduces the error
rate by 7.79%. We argue that such a compensation func-
tion could improve the touch performance of virtually
every smartphone user.

ACM Classification Keywords

1.3.6 Methodology and Techniques: Interaction tech-
niques; H.5.2 Interfaces and Presentation: User Inter-
faces - Interaction styles

General Terms
Design, Human Factors, Experimentation

Author Keywords
Touch screen, mobile phone, public study, user study,
app store, Android Market, large-scale

INTRODUCTION

Since the introduction of the iPhone, mobile phones with
touchscreens began to dominate the smartphone market.
Today, all major phone makers have touchscreen devices
in their portfolio. Most touchscreen devices have only a
few hardware buttons and the touchscreen is used for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee..

MobileHCI 2011, Aug 30-Sept 2, 2011, Stockholm, Sweden.

Copyright 2011 ACM 978-1-4503-0541-9/11/08-09...$10.00.

Enrico Rukzio
University of
Duisburg-Essen
Essen, Germany
enrico.rukzio@uni-due.de

Susanne Boll
University of Oldenburg
Oldenburg, Germany
susanne.boll @uni-
oldenburg.de

most input. While touchscreens are well suited for direct
manipulation, other use-cases such as text entry using
virtual keyboards suffer from the ”fat finger problem”.
Users do not see where they touch and cannot feel the
position of virtual keys and buttons. As touchscreens are
pervasive and have certain limitations, understanding
users’ touch performance is crucial to the design of user
interfaces for smartphones.

While touchscreens and touch behaviour have been stud-
ied for years, understanding even the low-level charac-
teristics of users’ touch behaviour remains challenging.
If investigating just the error rate for target selection
one must not only consider the two dimensions of the
screen but also the size of the target, different screen
sizes, aspect ratios, tasks, touchscreen technologies and
ergonomic aspects. Furthermore, the sequences of touch
contacts might affect the touch behaviour and doubles
the number of dimensions that must be considered. The
error rate is, however, not the only important aspect.
While Fitts’ law models the time to select a single target,
the precision with which targets are hit and the perfor-
mance for multiple simultaneously presented targets are
not sufficiently analysed.

The amount of touch events that can be collected in lab
studies to investigate users’ touch behaviour might seem
high at first glance. Assuming that a single participant
produces one touch event per second, 1,800 events can be
collected from a single subject in 30 minutes. E.g. Park
et al. collected 750 touch events from each participant
[9] and Perry et al. collected 1,000 touch event from
every subject [10]. But a much higher number of touch
events is needed for a detailed analysis, when considering
e.g. a touch screen with a resolution of 240x320 pixels
that provides 76,800 positions and the fact that usually
the effect of the target size has to be tested as well.

In order to collect a truly large amount of touch events,
we designed and implemented a mobile game that serves
as the apparatus for studying the touch behaviour of
smartphone users. In order to attract a large number
of participants, the game has been published to the
Android Market. Because external factors cannot be
ruled out and we have little control over the participants,
the study has an inherently low internal validity as there
was no possibility to control any contextual factors. The
flip side is that the diversity of the environment provides
a higher external validity than common lab studies.

After discussing related work, we will describe the game
that has been developed to collect the data. We provide
an overview about the data we collected after publishing
the game to the Android Market including the used de-
vices and how much participants played. Following this,
an analysis of the touch events is provided that shows the
error rate for different target sizes and screen locations.
Furthermore, it is shown how touch contacts are skewed
relative to the targets position across the screen. The
next section reports a compensation function that shifts
the touch events systematically to decrease the error
rate. We report then how we evaluated this function
by publishing an updated version of the game to the
Android Market. We show that the function significantly
decreases the error rate for the developed game. We
close the paper with an outlook to future work and a
call for investigating our data in more detail.

RELATED WORK

Research focusing on effective and efficient input and
output on mobile devices has always been an important
topic as it addresses the inherent conflict between the
desire for a small device size and ergonomic aspects
defined by the physiology of our eyes, hands and fingers.
PDASs being popular in the 90s relied mainly on resistive
touchscreens that combined input- and output space in
one screen and the user interface was optimized for stylus
based input. Most mobile phones used in the beginning
a display for output and a physical keypad for input.
Nowadays most smartphones rely almost solely on ca-
pacitive touchscreens and the users’ fingers for input and
output. The usage of a stylus came out of fashion as it
could easily be lost, it takes time to retrieve them, and
their usage implies two-handed interaction. One impor-
tant aspect to be considered in user interface design is
that the output resolution of such a touchscreen is much
higher than the input resolution of a human thumb or
finger. This leads to the ”fat-finger-problem” due to
the difficulty to select small targets with a much larger
finger and the aspect that the finger occludes the target
as well. Current smartphones address this aspect e.g.
through a visual confirmation of what has been touched
(e.g. the iPhone or Android on-screen keypads show a
zoomed-in version of the key currently being touched) or
trough callouts that show the region currently touched
in order to perform fine granular selections.

One strand of research focuses on interaction techniques
which allow the selection of small targets with a finger
without changing the size of the target while achieving
an acceptable error rate. In Shift [16] this has been
achieved through callouts showing a copy of the area
occluded by the finger in a non-occluded area and the
possibility to move a pointer in the callout via finger
movement in order to select the desired target. In Tap-
Tap [12] the occluded area is also shown in a callout but
here a zoomed in copy of the occluded area is shown
and the user has to touch the desired target in the
callout with a second touch. In Escape [17] the small
targets are visually changed and indicate a direction
in which the user has to drag its finger after touching
it in order to select it. Close targets indicate different
dragging directions through which it is possible to dif-

ferentiate between several very small and close targets.
The disadvantages of those interaction techniques are
that additional interactions are required when compared
with a simple touch, which requires more time and a
higher mental effort.

Further research focused on the optimal size of targets
while considering the trade-off between finger size and
user interfaces design. For almost perfect accuracy tar-
gets would have to have a size of more than 20 x 20 mm
[7] which would mean that current touchscreen phones
would be able to display only circa 8 targets while show-
ing almost no other information. According to the iOS
Human Interface Guidelines [1] the optimal size of a
tapable UI element on the iPhone is 6.74 x 6.74 mm
which is a compromise between an acceptable error rate
and available screen size. There exists a significant body
of research that investigated the influence of target size
and context on time needed for selecting a target and
the error rate [8, 15]. Considered contextual aspects
were e.g. the actual task (e.g. inspired by Fitts’ law or
text input), device- and display-size and -type, thumb
size [2], activity (e.g. standing or walking) [13], touch
feedback [6] or one-handed or two-handed interaction.
The outcome here is often a suggestion regarding an op-
timal target size and location under consideration of the
given context and an assumption regarding acceptable
error rate, task load or user satisfaction.

Relatively little research exists that analyses how the
actual location of the target on the mobile device or de-
vice orientation affects effectiveness and efficiency. Early
research focusing on fixed touchscreens mounted on a
table showed that users touch slightly below the actual
target if the screen is tilted away from the user and that
they touch above the target if its tilted towards the user
[14]. A further study with a touchscreen tilted towards
the user showed that participants not only touch slightly
below the target but that there is also an horizontal
bias as participant touched on average 0.5 cm left of
the actual target [14]. It’s been assumed that parallax
may explain the vertical bias but no explanation for the
horizontal bias has been found.

Previous research showed that the location of targets
on the screen has a significant effect on effectiveness,
efficiency and user satisfaction. Himberg et al. developed
an adaptive on-screen keyboard that observes where
the user is touching the display in relationship to the
displayed key [4]. This information is used to adapt
the shape, size and location of virtual keys in order
to improve error rate. Their findings show that right
handed participants tended to hit too far on the left
and vice versa for left-handed participants. Further
studies showed that regions which are easily to reach
with the thumb when considering one-handed interaction
achieve the best task performance and low perceived
difficulty [5]. It has been concluded that frequently used
buttons should be placed in those regions. A further
study showed again that targets within easy reach of the
thumb could be reached very quickly but the accuracy
was best when the targets were located on the left, right
and top edges of the screen [10]. Park et al. analysed
the success rate, error rate and convenience of 25 regions

of a touchscreen when using one-handed thumb input [9)].
The authors also analysed the offset between indicated
target and actual touch events. They were able to
observe location specific offset vectors and discussed the
idea of adjusting the location of the touch recognition
area in order to improve the overall performance as
location dependent offsets.

Our paper is the first to report the horizontal and vertical
offset between indicated target centre and actual hit
location that is based on a very large data set collected
in a realistic context. This allows us in contrast to
previous research, that was performed in laboratory
settings or which is based on a rather small number
of touch events, to calculate those offset vectors very
precisely. Furthermore are we the first to show that the
consideration of this horizontal and vertical bias could
lead to a significant improvement in terms of error rate
and precision of target selection.

DESIGN OF THE GAME

In order to collect a large number of touch events and
attract a large number of participants we decided to
develop a game. During the design we had to find a
good balance between providing players with a game
that is worth playing and a test application that collects
meaningful data. Based on our experience with using
Apps as a test platform that is published to a mobile
application store (see [3] for an overview) we consider
stringent tasks and users’ motivation as crucial aspects
for the success of this approach in terms of the validity
of the data and the widespread usage of the application.

Game play

The game play is inspired by the very controlled task
of the study described by Park et al. [9]. Targets are
presented to the player and the task is to touch these
targets. We decided to use circles as targets as these
have the same diameter in all directions and thus allow
easier comparison of different target sizes.

The game is structured in three stages called stars, water,
and fire. Each stage contains four levels and each level
consists of multiple micro levels. In most micro levels,
one circle is presented to the player (see Figure 1). The
player advances directly to the next micro level without
interruption as soon as the target is hit. If a target
has not successfully been hit in a certain time frame
it is counted as a miss. We used this type of task to
enable an analysis that does not need to consider the
existence of multiple targets. Every fifth micro levels
consists of multiple simultaneously presented targets
(see also Figure 1). As soon as a target is successfully
hit it disappears. The player must hit all targets to
advance to the next micro level.

To make a game out of the two basic tasks they must
be challenging for the player. Thus, the player must
complete a micro level in a certain timeframe. The time-
frame is reduced from micro level to micro level while
the player proceeds through a level. The player receives
one penalty point if a target has not been hit in this
timeframe. The game is lost when the player collected
three penalty points in one level. Players receive scores

when they successfully hit a target. The faster a target
is hit the higher the score.

Different target sizes are used in each level. The average
target size is reduced from level to level within each
stage. Levels of stage one ("stars”) consist of 20 micro
levels, in the second stage (”water”) the levels have 40
micro levels and the first three levels of the last stage
("fire”) consist of 60 micro levels. I order to make it
impossible to complete the game, the very last level
consist of 80 micro levels and we strongly assume that
it is impossible to complete this level. We did this to
encourage even very good players to keep playing.

Each stage has a different animated background shown in
Figure 1. The background has the purpose to make the
game visually appealing but should also increase the ex-
ternal validity because colourful or animated background
can be found in many situations (e.g. the Android home

screen or mobile games).

Figure 1. Screenshots of the game’s three stages: stars,
water, and fire. The left screenshot shows a microlevel
with a single circle while the other screenshots show mi-
crolevels with multiple targets.

Measures and consent

We collected various data about the characteristics of
the used devices and the performance of the players. An
unique identifier for each installation is derived from
a device’s " Android ID” using a hash function. Fur-
thermore, we collect the user’s locale (e.g. en-GB” or
7es ES”), the device’s type (e.g. "GT-I9000” for the
Samsung Galaxy S), the time zone, and the resolution.
We log the position and size of the targets for each micro
level while the user is playing. We also log the position
of each touch event and the time elapsed since the start
of the micro level. The device’s orientation (provided
by the phone’s accelerometer) is recorded for each touch
event but was logged only for 88.63% of the data because
we had not integrated this measure in the first version
of the game.

The properties of the used device are transmitted to
our server when the game is started. The data collected
while playing is transmitted after a level is completed
no matter if it was successfully completed or not. The
data is stored internally on the phone and retransmitted
after the next level is completed if the transmission fails.

We do not collect any data that allows identifying in-
dividual players or installations. We decided to clearly
inform players about the fact that data is collected in

order to act ethically (see [3, 11] for a discussion) and to
conform to corresponding legislation in many countries.
The modal dialog shown in Figure 2 tells players that
they are about to participate in a study when the game
is started for the first time.

Motivation

We tried to make the game visually appealing in order
to motivate intensive usage. We integrated different
animated backgrounds and a star highlights the score
a player received when a target is successfully hit. The
total sore is also shown in the background and continu-
ously moves across the screen to minimize its effect on
a player’s average performance. Furthermore a player
receives a "badge” when successfully completing a level.
To increase the long term motivation we implemented
a global and a local high score lists shown in Figure 2.
If a twitter client is detected on the player’s device a
”tweet this” button allows players to share their score
each time they achieve a high score.

L e
Global Local A nts L
" oosasas AL

About Comments' Similar

B @ 1436

Up|
T

2 Kalast 0084625 @ Science anyone?
| 3 meng 0084378 :
- It's all about speed and quick By playing this game you
4 meng 0084251 fingers. Touch and move as fast as participate in a study that
you can to see if you can beat all investigates the touch
5 ben wood 0084167 levels. Improve your dexterity and performance on mobile
try to be the fastest guy in the high phones. While you play we
6 ben wood 0083751 score. measure how you touch but
’ we DON'T tranismit)
7 meng 0083531 Agame and science at the same personalized data. By playing
time. Check out the about screen to you actively contribute to my
8 ben wood 0083516 learn more. PhD thesis :-)
9 ben wood 0083506
10 benwood 0083484 [T TEE L
11 ben WOOd 0083457 l Update l Uninstall]

Figure 2. The game’s high score list (left), description
in the Android Market (middle), and the modal dialogue
that informs player about the conducted study (right).

PUBLISHING IN THE MARKET

We published Hit It!" in the Android Market on October
31, 2010. The description of the game is shown in Figure
2. Till January 22, 2011 the game was installed 108,987
times according to Google’s Developer Console. The
game received 1,666 ratings with an average 4.19 on
the five point scale (the higher the better) provided
by the Android Market and there are 640 comments
about the game in the Android Market. In total we
collected data from 99,749 installations but only 91,731
installations provided meaningful data (see below). We
cannot control who contributes to the results as players
installed the game at their own will. We provide an
overview about the data in the following.

Devices, resolutions, and locales

In total we collected data from devices with 321 different
model names. Most of these model names appeared,
however, only a few times and have are rather exotic
name such as the ”I-Mobile i858 Jackbox Edition”. For
93 model names we collected data from more than a
hundred installations. As the mobile network operators
give different model names to the same device type

'Hit It! in the Android Market: https://market.android.
com/details?id=net.nhenze.game.button2

12,000

10654
» 10,000
<
S
& 8,000
2
£ 6000 51335142 4800
o
g 4,000 3139 -3096
£
2 2,000 -
0 4
=] QS o
A SIS N 2N ©
& o & & & & FH LF &
& FE N NP PN
® S ® s A
& & & R G
X 2
A e

Figure 3. The ten most common devices.

there are in fact less different devices than these 93
names suggest. The Samsung Galaxy S, for example,
appears with at least seven different model names. We
harmonized the model names for common devices. The
ten most common devices which represent 49.85% of all
installations are shown in Figure 3.

Looking at the device’s resolution is important as it can
be used to identify the aspect ratio which we considered
in our analysis. In total we found 20 different resolutions
but 13 resolutions are used by less than 500 installations.
The resolutions that are used by more than 500 instal-
lations are shown in Figure 4. The four most common
resolutions are 320x240, 480x320, 800x480, and 854x480.
For each of these four resolutions we collected data from
more than 15,000 installations.

35,000

30,000

25,000 -

20,000 -

15,000

number of installations

10,000 -+

5,000 -

0 -

Figure 4. Resolutions with more than 1000 installations.

The collected locales and time zones show that there is a
strong bias towards western countries among the players.
In particular, the two most common locales are English
speaking US ("en_US”, 48.31%) and English speaking
Great Britain ("en-GB”, 9.68%). This is followed by
France ("fr_.FR”, 4.81%), Japan (”ja_JP”, 3.71%), Tai-
wan ("zh - TW”, 3.18%), and Germany (”de_-DE”, 3.00%).
The other 190 locales together result in 27.32% includ-
ing 56 further English locales representing 3.91% of all
installations. The selected time zones show a similar pic-
ture. The only non US American or European time zone
among the ten most common time zones is Asia/Tokyo.

Amount of collected data

While we received data from 99,749 installations not
all of them provided meaningful data. We only use
data from 91,731 installations because we either did
not record a single played level or because the data is
inconsistent due to multiple installations that share a
single identifier (a known bug of the Android platform).

In total 1,950,888 levels have been played and on aver-
age 21.27 levels (SD=66.99) have been played on each
installation. On 45.16% of the installations less than
10 levels have been played. There are, however, a few
very intensive players and ten installations, for example,
contributed more than 2,000 levels each. Figure 5 pro-
vides an overview about the number of played levels per
installation. The number of collected touch events per
device is analogue. In total 120,626,225 touch events
have been recorded and on average 1,315 (SD=5,575)
events have been produced on each device.

100,000

[%)
c
(=]
= 80,000 \
2 N\
£ 60,000 \
f=)
= 40,000
°© \
@ 20,000
Kl
E 0
c
0 20 40 60 80 100
number of played levels
» 100,000
S \
S 80,000 \
B 60,000
2 N\
S 40000 ~
§ 20000 S~
E 0
< 0 1,000 2,000 3,000 4,000 5,000

number of taps

Figure 5. Number of played levels and produced touch
events. Both graphs must be interpreted as on y installa-
tions more than x levels have been played. E.g. on 30.000
installations more than 20 levels have been played.

ERROR RATES

We analysed the collected data to investigate the re-
lation between the targets’ size and the error rate as
well as the targets’ position and the error rate. An er-
ror occurred when the user touched the screen outside
of a displayed target. Both aspects are crucial when
designing the interface for touchscreen devices because
interface designers have to find a balance between the
amount of information that should be displayed and the
size of touchable interface elements. As the screen size
as well the device’s form factor influences the error rate
we treated the devices separately. In the following we
describe the results for the most common device for each
of the four most common resolutions: the HTC Wildfire,
the LG Optimus One, the Samsung Galaxy S, and Sony
Erricson’s Xperia X10.

Errors per target size

Only micro levels with a single target are considered
too analyse the relation between target size and error
rate. We removed the very first played level from each

result set to reduce noise and only the first eight levels
are considered because the last stage (”fire”) contains
an unbeatable level. Furthermore, only players that
contributed at least a hundred micro levels are contained
in the results to reduce the amount of noise in the data.
Through this we considered 1,766,207 touch events for
the HTC Wildfire, 1,827,444 for the LG Optimus One,
3,810,875 for the Samsung Galaxy S, and 1,366,672 for
Sony Erricson’s Xperia X10.

—Xperia X10 =——Samsung Galaxy$ LG Optimus One =——HTC Wildfire
50%
40% \\
2 30%
: \
]
o \&
10% S -
%—mﬂ
—
0% t

5 10 15 20 25 30 35 40

target size in mm

Figure 6. Ratio of errors for different target sizes. The
diagrams show the percentage of errors for the Xperia
X10, the Samsung Galaxy S, the LG Optimus One, and
the HTC Wildfire.

As the four devices have different screen size and resolu-
tions the target sizes have been normalized to millimetre.
Figure 6 shows the average error rate for the target sizes.
As one would expect the error rate decreases with an
increasing target size.

Errors per position

To analyse the relation between targets’ positions and
the error rate we divided the screen in 10x10 areas. For
each of these areas we determined the average error
rate for all targets whose centre falls in the area. As
large targets do not fit in the areas at the border we
only consider targets smaller than 12mm in order to
not disadvantage areas at the border. Furthermore, we
focused again on the most common device for each of
the four most common resolutions. As only targets
smaller than 12mm are used we only considered 311,492
touch events for the HTC Wildfire, 404,943 for the LG
Optimus One, 552,889 for the Samsung Galaxy S, and
221,879 for Sony Erricson’s Xperia X10. The results
are shown in Figure 7. Apparently the error rate at the
border is much higher than in the centre. Looking, for
example at the Wildfire the average error rate at the
border is 31.68% but 17.59% in the centre.

Discussion

The error rates show the same trend across the four de-
vices. Below 15mm the error rate dramatically increases
and jumps to over 40% for targets smaller than 8mm.
These results cannot be directly compared with previous
research as we use circles instead of squares as discussed
previously. Our observed error rates are higher than
error rates reported by [8, 10] when assuming that the
circles’ diameter is equivalent to a quadrate’s diameter.
Here one has to consider that the area of a circle is

0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

Xperia X10 Samsung Galaxy S

LG Optimus One HTC Wildfire

Figure 7. Ratio of errors across the display for targets smaller than 12mm (dark areas indicate regions with a low
error rate and bright areas indicate regions with a high error rate).

larger than the area of the quadrate when assuming
that both have the same diameter. For a diameter of
10.89mm (a quadrate with an edge length of 7.7mm)
Parhi et al. found an error rate of 5% [8], Perry et al.
found an error rate of 12.3% [10], while we observed an
error rate of 14.19%-18.86%. We assume that the higher
error rate can be explained by our participants’ higher
time pressure and because they were not able to see
the next target in advance. Furthermore, the animated
background might impact the players’ performance.

In contrast to [10] we found that especially the border
of the screen seems to be more difficult to hit than the
centre. The results obviously do not directly generalise
to other use cases as players had to touch targets under
high temporal pressure. We assume that the relative
differences in the error rates should, however, be trans-
ferable.

From those findings we conclude that the error rate for
a target could be reduced be enlarging it and by moving
it towards the centre of the screen. Furthermore, one
could consider the relationship between the error rate
for different target sizes and different screen positions.
The difference between the border of the HTC Wildfire
(31.68% error rate for targets smaller than 12mm) and
the centre (17.59% error rate for targets smaller than
12mm), for example, corresponds to an increase of the
target’s size from 8mm to 11mm.

TOUCH POSITIONS

We further analysed the collected touch events to inves-
tigate if a systematic offset between the targets’ position
and the touched positions exists. We derive a compen-
sation function that tries to reduce the number of errors
and we evaluate this function by simulating the effect on
collected data that wasn’t used for deriving the function.

Touch offsets

To demonstrate the systematic skew we determined the
offset between each touch and the according target for all
micro levels with a single target. Figure 8 and Figure 9
exemplary show the distribution of the deviations along
the x-axis and the y-axis for the HTC Wildfire and
four selected areas considering on average 129,138 touch
events for each region from 5,133 installations in total.
When discussing offsets then we assume that the origin of
the used X/Y coordinate system is in the top-left corner.

5%

——top-left ——bottom-left top-right ——bottom-right

//\
./ O\
== N

-40 -30 -20 -10 0 10 20 30 40

4%

3%

taps

2%

x-offset

Figure 8. Histograms of touch offsets along the x-axis
for the HTC Wildfire. Each line visualizes the touch
distribution for targets in the coloured rectangles shown
in the checkerboard pattern.

A positive x-offset indicates that the touched location is
too far on the right and a positive y-offset indicates that
the touched location is too far to the bottom. The offsets
discussed in the following show the distance between
the centre of the circles and the actual touched location.
The average offset of the top-left area (marked in blue)
is x=4.90px and y=6.64px (SD(x)=11.91, SD(y)=12.01).
That means that the touches are shifted towards the
lower-right corner of the screen. In contrast, the average
offset of the bottom-right area (marked in purple) is
x=-2.55px and y=-2.24px (SD(x)=11.63, SD(y)=12.57),
which means that the touches are slightly shifted towards
the top-left corner of the screen.

To estimate the offset across the screen we divided the
screen in 10x10 areas. For each area we determined the
average offset of the touch events for all targets whose
centre is inside the area along the x-axis and the y-axis.
As large targets do not fit in the areas at the border we
only consider targets smaller than 12mm. Furthermore,
we only consider touch events that hit the target to
avoid shifting the average offset towards the centre of
the screen. The x-offset and the y-offset are than used
to determine an offset vector. The orientations of these
vectors and the vectors’ length for the Samsung Galaxy
S are shown in Figure 10 for which we could consider
440,004 touch events from 8,201 installations.

5%

——top-left ——bottom-left ——top-right ——bottom-right

4%

3%

taps

2%

1%

\‘\
\\

0% =
40 30 -20 -10 0 10 2

\\
~

y-offset

Figure 9. Histograms of touch offsets along the y-axis
for the HTC Wildfire. Each line visualizes the touch
distribution for targets in the coloured rectangles shown
in the checkerboard pattern.

The touch events for the Samsung Galaxy S are sys-
tematically skewed towards a position in the lower-right
of the screen and the offset vectors point towards this
position. We approximated the exact location by testing
the vector field for every screen position. The position
with the lowest average deviation from the empirically
determined vectors is at the position 358px/605px. This
position is 1.33cm (~25% of the screen’s width) left
and 2.12cm (~25% of the screen’s height) above the
lower-right corner of the screen. Looking at the other
devices shows a similar skew. For the HT'C Wildfire the
position is approximately 1.22cm left and 2.44cm above
the lower-right corner of the screen. The touch events
for the LG Optimus One are skewed towards 0.90cm left
and 1.35cm above the lower-right corner of the screen
and for Sony Ericsson’s Xperia X10 it is 1.49cm left and
1.77cm above the lower-right corner of the screen.

For all four phones the touch events are systematically
skewed. Furthermore, the observed effect is consistent
with the preliminary data presented in [9]. As only hit
targets that are smaller than 12mm are considered the
offset is likely even larger for bigger targets. The direc-
tion of the overall skew suggests that the touch events

1ox1d ul s10199A 39510 Jo Y31huI|

Figure 10. Orientation and relative length of the offset
vectors for the Samsung Galaxy S.

are shifted towards a position where the user’s thumb
naturally touches the screen if the phone is held in the
right hand. Unfortunately we do not know how par-
ticipants held their phone while playing. In particular,
it would be interesting to compare right-handed and
left-handed users because it could be assumed that the
offset is mirrored along the y-axis for left-handed users.

Shifting touch positions

As shown in the previous section, a systematic offset
between the targets’ centre and the touched position
exists. As the offset is systematic it might be possible to
apply a function to the touch events that compensates
this offset. Based on the 75% of the considered data we
derived a function that tries to minimize the number of
errors. Therefore we divided the screen in 30x30 areas.
For each area we determined how touch events that fall
in this area should be moved to reduce the total number
of errors for this area. Only micro levels with one circle
are considered. In contrast to the previous section, hits
and misses as well as targets of all sizes are used.

As we aim at evaluating the function on a large basis
we do not differentiate between individual devices. As
the four most common resolutions have different aspect
ratios we, however, treat each resolution individually.
For each resolution and each of its areas we tested all
possible shifts. To determine the shift vectors we consid-
ered 6,373,962 touch events and 17,467 installation for
240x320, 8,597,786 touch events and 21,199 installation
for 320x480, 12,431,333 touch events and 31,473 installa-
tion for 480x800, and 5,078,545 touch events and 14,917
installations for 480x854. Thereby, we determined one
vector that shifts the touch event for each area. The
shifts along the x-axis and y-axis for the Samsung Galaxy
S are shown in Figure 11.

Applying the determined shift vectors on the remaining
25% of the data that has not been used for training
leads to a reduction of the total number of errors of
3.13% for installations with 240x320 pixels, of 3.18% for
installations with 320x480 pixels, of 3.49% for installa-
tions with 480x800 pixels, and of 4.08% for installations

20
20
10
0
-10
-20
-30
i
-40

movement along the x-axis movement along the y-axis

spaxid ur yrys

Figure 11. Emperically determined values to move touch
events along the x-axis (left) and the y-axis (right) for a
resolution of 480x800 pixels.

50

—empirically determined approximate function

40

y'=-0.0001y" + 0.0081y?- 0.246y* + 3.7053y2 - 26.404y + 59.344
30 R?=0.9888

o\
. \
\

-40

shift along the y-axis
o

-50

y-axis of the screen

Figure 12. Average shift along the y-axis and the approx-
imate polynomial function for a resolution of 480x800
pixels.

with 480x854 pixels. On average, the number of errors
is reduced by around 3.5%.

Analysing the shift vectors we suppose that the deter-
mined y-shift only depends on the y-value and the x-shift
only depends on the x-value. Therefore, we computed
the average y-shift values over the complete width of the
screen. Furthermore, we derived a polynomial function
that approximate the curve to determine a continuous
compensation function. The curve and its approximate
function is shown in Figure 12 for the 480x800 resolution.

We accordingly processed the data for the x-shift and
the other resolutions. Again we used the 25% of the data
that has not been used for training to test the determined
compensation functions. They reduce the number of
errors by 3.51% for installations with 240x320 pixels, by
3.42% for installations with 320x480 pixels, by 3.65%
for installations with 480x800 pixels, and by 4.59% for
installations with 480x854 pixels. The number of errors
is further reduced for all resolutions compared to using
the raw values and results in an average error reduction
of around 3.8%. We assume that two factors contribute
to this improvement. Instead of discrete vectors that
treat all touch events in one area equal, a continuous
function is used. Thereby, each screen position is treated
differently. Furthermore, the individual shift vectors are
affected by noise. The influence of this noise is reduced
by using the average of all x-shifts and y-shifts along
the respective axis.

EVALUATION

We integrated the previously discussed compensation
function in our game in order to investigate its effect
on the users’ performance. By publishing an update
of the game we conducted an independent measures
quasi-experiment with one independent variable.

Design

In the previous section we analysed how the compensa-
tion functions perform when applied to the remaining
25% of the touch events not used to determine the
function. The simulation can, however, not take into
account if players adapt to the function. Therefore,
an independent-measures experiment was conducted.
The compensation function described in the previous
section was integrated in the game for the four resolu-

tions 240x320, 320x480, 480x800, and 480x854. Each
installation is randomly assigned to either the control
condition or to the experimental condition when the
game is started for the first time. In the control condi-
tion, no function is applied to the touch events while in
the experimental condition the compensation function
is used to shift the touch events. Players are neither
informed that their touch events are shifted nor about
the condition they are assigned to.

The error rate as well as the distance between touch
events and targets is used as dependent variables. Two
types of errors contribute to the error rate: Whenever a
player’s touch misses a circle and whenever a circle is not
hit within the given time frame. The number of errors
is divided by the number of presented circles resulting
in the error rate. A player’s average distance between
touch events and the targets’ centre is measured only for
touch events that hit a target in order to rule out the
effect of the error rate on this measure. Our hypothesis
was that the error rate will be lower and the distance
will be smaller for all resolutions and all played levels.
We assumed that the improvement for the error rate
will be at least as high as the results of the simulation.

We deployed an update of the game to the Android
Market on January 22, 2011. All players that updated or
newly installed the game are considered in the following.
As players are free to play or stop at any time the study
is not a true experiment but a quasi-experiment.

Results

For the analysis we considered only the four most com-
mon resolutions (240x320, 320x480, 480x800, 480x854)
representing 94.16% of all installations of the updated
game. The remaining data consist of data from 7,847
installations for the control condition and 7,910 installa-
tions for the experimental condition. We removed the
first ever played level from the data provided by each
device to further reduce the noise in the data. Further-
more, we only consider data sets that contribute at least
a hundred circles to the respective analysis. Through
this we were able to consider 7,435,733 touch events
from 6062 installations for the control condition and
7,890,711 touch events from 6139 installations for the
experimental condition in total. A one tailed dependent
t-test for unequal variance is used to test our hypothesis.

Comparing the installations in the control condition
(n=6062) with the installations in the experimental con-
dition (n=6139) after shaping the data as described
shows that the manipulation had a significant effect
(p<.0001, r=0.04) on the error rate. The error rate
for the control condition (M=13.39, SD=14.81) is sig-
nificantly higher than for the experimental condition
(M=12.34, SD=13.83). The error rate per circle for
the experimental condition is 7.79% lower than for the
control condition (see also Figure 13).

To make the distance between touch events and tar-
gets’ centres comparable across different resolutions the
distance is converted from pixels to percentage of the
screen’s width. The applied function also had a signifi-
cant effect on the distance between touch events and the
targets’ centres (p<10~27, r=0.10). In the control condi-

tion (n=5921) the distance was 2.93% larger (equivalent
to just one pixel on a Samsung Galaxy S) than in the
experimental condition (n=5993).

16%

14% 13.39%
12.34%
12% -
10% -
8%

6%

errors per circle

4%

2%

0%

control condition experimental

condition

Figure 13. Overall error rates for all levels from instal-
lations with one of the addressed resolutions (error bars
show standard error).

We further analysed the data treating the four reso-
lutions independently to see if the function reduces
the error rate for all resolutions (see Figure 14).
The error rate is reduced by 10.69% for 240x320
(Neont.=1005, neqp =1050), by 2.38% for 320x480
(Neont.=1600, neqp =1638), by 7.53% for 480x800
(neont.=2396, Ny =2403), and by 6.17% for 480x854
(Neont.=1061, neqp =1048). The difference is signifi-
cant for 240x320 (p<.01, r=0.06) and 480x800 (p<.01,
r=0.03) but not for 480x854 (p=.10, r=0.06) and also
not for 320x480 if we consider a reduced significance
level (p=.02, r=0.04).

The control condition’s average distance between touch
events and the targets’ centre is significantly higher than
the experimental condition’s distance for all resolution
with a small effect (p<.00001, r=0.1) but for 480x854
where the manipulation had a very small effect (p<.01,
r=0.06).

18%

16.10% M control condition M experimental condition
4.38%

16%

149 13.7403 429

%
1wy 22
82%

errors per circle

240x320 320x480 480x800 480x854

Figure 14. Error rates for all levels from installations
with the respective resolution (error bars show standard
error).

Looking at the four first level the error rate is reduced for
all resolutions and all but the first level of the 320x480
resolution (Neons. =273, Negp. =278) where the error rate
is increased by 4.98% percent (p=.31, r=-0.02). Figure
15 exemplarily shows the error rate for 240x320. For this
resolution the error rate is reduced by 19.39%-24.20%.
The differences are significant only for the third (p=.01,
r=0.14) and fourth level (p=.01, r=0.14) with a small

effect size. The distance between touch events and the
targets’ centre is lower for all resolutions and all of the
first four levels. The average distance is reduced by
0.44%-5.52%. The difference is significant at a .01 level
for 9 out of 16 levels. The manipulation had a small
effect for 9 and a very small for 7 of the 16 levels.

35%

M control condition H experimental condition

30%

25%

20%

15% -

errors per circle

10% -

5%

0%

level 1 level 2 level 3 level 4

Figure 15. Error rates for installations with a resolu-
tion of 240x320 for the first four levels (error bars show
standard error).

Discussion

The evaluation shows that the applied function signifi-
cantly reduces the error rate if considering all resolutions.
The error rate is also reduced for the four resolutions but
the difference is not always significant. Even if looking
at the individual levels for each resolution shows that
the error rate is lower for all but one of the 16 analysed
levels. We assumed that the reversed result for this level
is by chance. The effect size, however, is very small for
the overall result and the individual resolutions. It is
still small if treating the levels separately. Similarly the
distance between touch events and the targets’ centre is
reduced for all analysed levels. Overall, the difference is
significant and we observed a small effect and also for
most analysed levels we determined a significant small
effect.

We assume that the applied function improves the perfor-
mance of the average players in all circumstances. The
function does not only reduce the error rate but also
improves the players’ precision. The small or very small
effect size, however, shows that only a small percentage
of the variance can be explained by our manipulation.
Looking again at the data returned by individual in-
stallations we see some abnormal high error rates. For
some installations the error rate is higher than 80% for
both conditions. These devices strongly influence the
effect size and we have no explanation for them. The
differences between the resolutions, devices, and levels
also add variance to the data and reduce the effect size.

In general we assume that the developed function im-
proves the players’ performance. As the function does
not differentiate between different devices with the same
resolution the error rate might be further reduced if the
functions are constructed for individual devices. One
hint that supports this assumption is the small improve-
ment for the resolution 320x480. For this resolution we
found not only more different devices but we also assume
that the differences between the devices are larger than
for the other resolutions. As the developed functions

treat the x-axis and the y-axis separately this leaves
further room for improvement.

This evaluation cannot show that the developed function
would improve users’ touch performance for other tasks.
We, actually, assume that this specific function would
not improve the users’ performance for a wide range of
tasks because it is optimized to reduce the error rate for
one specific task. A function that just cancels out the
systematic skew described in the previous section could
already be more general. Incorporating data for other
tasks and probably also incorporating more degrees of
freedom such as the device’s orientation, handedness of
the user and the timing could result in a generally ap-
plicable function that improves the touch performance.
Deriving functions for specific tasks and widgets is an-
other option. This evaluation, however, does show that
a function to improve users’ touch performance exist at
least for one tasks. The function’s simplicity makes it
plausible to assume that functions for other tasks and
probably also a generally applicable function exists.

SUMMARY AND FUTURE WORK

In this paper we analysed the touch behaviour of smart-
phone users. Using a game published to the Android
Market we collected more than 120 million touch events
from 91,731 installations. We used the data to deter-
mine the error rate for different target sizes and screen
positions. The data is also used to show that touch
events are systematically skewed toward a position in
the lower-right of screen. Based on this finding we
trained a function that shifts the touch events to reduce
the number of errors. The function is evaluated by pub-
lishing an update of the game to the Android Market.
We showed that the function significantly reduces the
players’ error rate and improves their precision across
different resolutions and devices.

Our findings have a rather low internal validity as we
cannot control how the users play the game but our
results have a very high external validity due to the
large number of contexts, users and devices which have
been considered. A further aspect to be taken into
account is that we considered touch events recorded
during a game play which stays in contrast to the rather
formal tasks performed in [8, 9]. As we focus on the basic
characteristics of the touch behaviour we nonetheless
strongly assume that the results are meaningful beyond
the scope of this specific game. A further limitation is
the self-selectiveness of the participants. We attracted
participants that like to play this particular kind of
game. Compared to lab studies our approach has the
advantage that the participants are more diverse and
despite a bias towards western countries come from all
over the world.

The results presented in this paper are only a fraction of
what can be investigated using the collected data. We
would like to share the data with other to enable further
analysis®. We are particularly interested in investigating
touch sequences. A touch event might not only depend
on the target’s size and location but also on previous
touch contacts. We plan to apply the findings presented

?Data is available from http://nhenze.net/?page_id=673

in this paper and also findings about touch sequences to
virtual keyboards. As we showed that the error rate can
be reduced for the game we hope that we can similarly
reduce the error rate for virtual keyboards.

Acknowledgments: Parts of this work were conducted
within the context of the Emmy Noether research group
Mobile Interaction with Pervasive User Interfaces funded
by the German Research Foundation (DFG).

REFERENCES
1. Apple Inc. iOS Human Interface Guidelines, 2010.

2. V. Balakrishnan and P. Yeow. A study of the effect
of thumb sizes on mobile phone texting satisfaction.
Journal of Usability Studies, 3(3), 2008.

3. N. Henze, M. Pielot, B. Poppinga, T. Schinke, and
S. Boll. My App is an Experiment: Experience
from User Studies in Mobile App Stores. accepted
by the IJMHCI, 2011.

4. J. Himberg, J. Hkkil, P. Kangas, and J. Mntyjrvi.

On-line personalization of a touch screen based
keyboard. In Proc. IUI, 2003.

5. A. Karlson. Interface Design for Single-Handed Use
of Small Devices. In Proc. UIST, 2008.

6. S. Lee and S. Zhai. The performance of touch
screen soft buttons. In Proc. CHI, 2009.

7. J. R. Lewis. Literature review of touch screen
research from 1980 to 1992. In IBM Technical
Report 54.694, 1993.

8. P. Parhi, A. Karlson, and B. Bederson. Target size

study for one-handed thumb use on small
touchscreen devices. In Proc. MobileHCI, 2006.

9. Y. Park, S. Han, J. Park, and Y. Cho. Touch key
design for target selection on a mobile phone. In
Proc. MobileHCI, 2008.

10. K. Perry and J. Hourcade. Evaluating one handed
thumb tapping on mobile touchscreen devices. In
Proc. GI, 2008.

11. M. Pielot, N. Henze, and S. Boll. Experiments in
App Stores - How to Ask Users for their Consent?
In Proc. workshop on Ethics, logs € videotape, 2011.

12. A. Roudaut, S. Huot, and E. Lecolinet. TapTap and
MagStick: improving one-handed target acquisition
on small touch-screens. In Proc. AVI, 2008.

13. B. Schildbach and E. Rukzio. Investigating

selection and reading performance on a mobile
phone while walking. In Proc. MobileHCI, 2010.

14. A. Sears. Improving touchscreen keyboards: Design
issues and a comparison with other devices.
Interacting with computers, 3(3), 1991.

15. A. Sears and Y. Zha. Data entry for mobile devices
using soft keyboards: Understanding the effects of
keyboard size and user tasks. International Journal
of Human-Computer Interaction, 16(2), 2003.

16. D. Vogel and P. Baudisch. Shift: a technique for
operating pen-based interfaces using touch. In Proc.
CHI, 2007.

17. K. Yatani, K. Partridge, M. Bern, and M. Newman.
Escape: a target selection technique using
visually-cued gestures. In Proc. CHI, 2008.

